\(45^0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Vận dụng định lý về tỉ số lượng giác của hai góc phụ nhau ta có:

sin60° = cos(90° – 60°) = cos30°

Tương tự:

cos75° = sin(90° – 75°) = sin 15°

sin52°30′ = cos(90° – 52°30′) = 38°30′

cotg82° = tg8°; tg80° = cotg10°

24 tháng 4 2017

Vận dụng định lý về tỉ số lượng giác của hai góc phụ nhau ta có:

\(sin60^0=cos\left(90^0-60^0\right)=cos30^0\)

\(cos75^0=sin15^0;sin52^030'=cos37^030'\)

\(cotg82^0=tg8^0;tg80^0=cotg10^0\)



a) cos14∘=sin76∘;cos87∘=sin3∘.cos14∘=sin76∘;cos87∘=sin3∘..

sin3∘<sin47∘<sin76∘<sin78∘sin3∘<sin47∘<sin76∘<sin78∘ nên

cos78∘<cos76∘<cos47∘<cos3∘cos78∘<cos76∘<cos47∘<cos3∘.

b) cotg25∘=tg65∘;cotg38∘=tg52∘cotg25∘=tg65∘;cotg38∘=tg52∘.

tg52∘<tg62∘<tg65∘<tg73∘tg52∘<tg62∘<tg65∘<tg73∘;

nên cotg38∘<tg62∘<cotg25∘<tg73∘cotg38∘<tg62∘<cotg25∘<tg73∘.

Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).



24 tháng 4 2017

a) cos14=sin76;cos87=sin3..

sin3<sin47<sin76<sin78 nên

cos78<cos76<cos47<cos3.

b) cotg25=tg65;cotg38=tg52.

tg52<tg62<tg65<tg73;

nên cotg38<tg62<cotg25<tg73.

Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).

4 tháng 11 2016

Ta có : \(cos30^0=sin60^0\)

\(cos15^0=sin75^0\)

Sắp xếp : \(sin30^0,sin40^0,sin60^0,sin75^0,sin89^0.\)

4 tháng 11 2016

Ta có: \(\cos30^o=\sin60^0\), \(\cos15^0=\sin75^0\)

\(\sin30^0< \sin40^0< \sin60^0< \sin75^0< \sin89^0\)

\(\Leftrightarrow\sin30^0< \sin40^0< \cos60^0< \cos75^0< \sin89^0\)

 

24 tháng 4 2017

Vẽ tam giác ABC vuông tại A, góc C = 34°

Theo định nghĩa ta có:

2016-11-05_162426

24 tháng 4 2017

Hướng dẫn giải:

Vẽ tam giác ABC vuông tại A, ˆC=34∘C^=34∘

Theo định nghĩa ta có:

sin34∘=ABBCsin34∘=ABBC

cos34∘=ACBCcos34∘=ACBC

tg34∘=ABACtg34∘=ABAC

cotg34∘=ACABcotg34∘=ACAB.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

7 tháng 11 2017

(Áp dụng tính chất lượng giác của hai góc phụ nhau.)

Vì 60o + 30o = 90o nên sin60o = cos30o

Vì 75o + 15o = 90o nên cos75o = sin15o

Vì 52o30' + 37o30' = 90o nên sin 52o30'= cos37o30'

Vì 82o + 8o = 90o nên cotg82o = tg8o

Vì 80o + 10o = 90o nên tg80o = cotg10o

\(\sin39^013'=0,6322\)

\(\cos52^018'=0,6115\)

\(\tan13^020'=0,2370\)

\(\cot10^017'=5,5118\)

\(\sin54^0=0,8090\)

\(\cos45^0=0,7071\)

24 tháng 4 2017

hinh 37

a) Sin α = b/ a ; Cos α = c / a

Tg α = b / c ; Cotg α = c / b

b) Sin β = Cos α ; Cos β = Sin α

Tg β = Cotg α ; Cotg β = Tg α

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9