K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

3 tháng 9 2020

a, \(x^2-4x+3=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

TH1 : x = 3 ; TH2 : x = 1

b, \(2x^2-3x-2=0\Leftrightarrow\left(x-2\right)\left(x+\frac{1}{2}\right)=0\)

TH1 : x = 2 ; TH2 : x = -1/2 

c, Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2+2t-8=0\Leftrightarrow\left(t-2\right)\left(t+4\right)=0\)

TH1 : t  = 2 ; TH2 : t = -4 

Tương tự ... 

3 tháng 9 2020

1a) 

x2 - 4x + 3 = x2 - x - 3x + 3 

                  = x( x - 1 ) - 3( x - 1 )

                  = ( x - 1 )( x - 3 )

2c) 

2x2 - 3x - 2 = 2x2 + x - 4x - 2 

                   = x( 2x +1 ) - 2( 2x + 1 )

                   = ( 2x + 1 )( x - 2 ) 

3e)

x4 + 2x2 - 8 (*)

Đặt t = x2

(*) <=> t2 + 2t - 8

       = t2 - 2t + 4t - 8 

       = t( t - 2 ) + 4( t - 2 )

       = ( t - 2 )( t + 4 )

       = ( x2 - 2 )( x2 + 4 )

4b) x2 + 4x - 12 = x2 - 2x + 6x - 12

                          = x( x - 2 ) + 6( x - 2 )

                          = ( x - 2 )( x + 6 )

d) 2x3 + x - 2x2 - 1 = 2x2( x - 1 ) + 1( x - 1 )

                               = ( x - 1 )( 2x2 + 1 )

f) x2 - 2xy - 3y2 = ( x2 - 2xy + y2 ) - 4y2

                         = ( x - y )2 - ( 2y )2

                         = ( x - y - 2y )( x - y + 2y )

                         = ( x - 3y )( x + y )

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

5 tháng 4 2020

Vì P(x) có hệ số bậc cao nhất là 1

Nên P(x) có thể được viết dưới dạng: \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

Và \(P\left(-1\right)=\left(-1\right)^5-5\left(-1\right)^3+4\left(-1\right)+1=1\)

\(P\left(\frac{1}{2}\right)=\frac{77}{32}\)

Ta có: \(Q\left(x\right)=2x^2+x-1=2x^2+2x-x-1=2x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(2x-1\right)\)

=> \(Q\left(x_1\right).\text{​​}\text{​​}Q\left(x_2\right).\text{​​}\text{​​}Q\left(x_3\right).\text{​​}\text{​​}Q\left(x_4\right).\text{​​}\text{​​}Q\left(x_5\right)\text{​​}\text{​​}\)

\(=\left(x_1+1\right)\left(2x_1-1\right)\left(x_2+1\right)\left(2x_2-1\right)\left(x_3+1\right)\left(2x_3-1\right)\left(x_4+1\right)\left(2x_4-1\right)\left(x_5+1\right)\left(2x_5-1\right)\)

\(=32\left(-1-x_1\right)\left(\frac{1}{2}-x_1\right)\left(-1-x_2\right)\left(\frac{1}{2}-x_2\right)\left(-1-x_3\right)\left(\frac{1}{2}-x_3\right)\left(-1-x_4\right)\left(\frac{1}{2}-x_4\right)\left(-1-x_5\right)\left(\frac{1}{2}-x_5\right)\)\(=32.P\left(-1\right).P\left(\frac{1}{2}\right)=32.1.\frac{77}{32}=77\)

7 tháng 4 2020

\(p\left(x\right)=x^5-5x^3+4x+1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

\(Q\left(x\right)=2\left(\frac{1}{2}-x\right)\left(-1-x\right)\)

Do đó \(Q\left(x_1\right)\cdot Q\left(x_2\right)\cdot Q\left(x_3\right)\cdot Q\left(x_4\right)\cdot Q\left(x_5\right)\)

\(=2^5\left[\left(\frac{1}{2}-x_1\right)\left(\frac{1}{2}-x_2\right)\left(\frac{1}{2}-x_3\right)\left(\frac{1}{2}-x_4\right)\left(\frac{1}{2}-x_5\right)\right]\)

\(=\left(-1-x_1\right)\left(-1-x_2\right)\left(-1-x_3\right)\left(-1-x_4\right)\left(-1-x_5\right)\)

\(=32P\left(\frac{1}{2}\right)\cdot\left[P\left(-1\right)\right]\)

\(=32\cdot\left(\frac{1}{32}-\frac{5}{8}+\frac{4}{2}+1\right)\left(-1+5-4+1\right)\)

\(=4300\)

*Mình không chắc*

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

1 tháng 10 2020

b, \(x^3+2x^2+2x+1=\left(x^2+x+1\right)\left(x+1\right)\)

c, \(x^3-4x^2+12x-27=\left(x^2-x+9\right)\left(x-3\right)\)

d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)

e, sai đề 

a, \(\left(ab-1\right)^2+\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)

b, \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2+x+1\right)\)

c, \(x^3-4x^2+12x-27=\left(x-3\right)\left(x^2-x+9\right)\)

d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)

e, cho mình sửa đề xíu

\(x^4+2x^3+2x^2+2x+1=\left(x+1\right)^2\left(x^2+1\right)\)

14 tháng 8 2015

a) x^2 - 4 + ( x - 2 )^2 

= ( x- 2 )(x + 2 ) + ( x-  2)^2 

= ( x - 2 ) ( x + 2 + x - 2 )

= 2x (x-2)

b) x^3 - 2x^2 + x - xy^2

= x ( x^2 - 2x + 1 - y^2) 

= x [ ( x - 1 )^2 - y^2 ] 

= x(x - 1 - y)( x - 1 + y )

c) x^3 - 4x^2 - 12x + 27 

= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27 

= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )

Để hai lần nha 

= ( x+ 3 )(x^2 - 7x + 9 ) 

30 tháng 9 2018

\(x^2-4+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2+x-2\right)\)

\(=2x\left(x-2\right)\)

hk tốt

^^

Đây là cách hiện đại :

 \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)

7 tháng 8 2016

a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)

cu hai so nhom 1 nhom roi  dat thua so chung la xong

b,x^4+x^3+x^3+x^2+x^2+x+x+1

cu hai so lai nhom 1 nhom va dat thua so chung