K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a) \(4x^3y^2-8x^2y+12xy^2=4xy\left(x^2y-2x+3y\right)\)

b) \(3x^2-6xy-5x+10y=3x\left(x-2y\right)-5\left(x-2y\right)=\left(x-2y\right)\left(3x-5\right)\)

c) \(x^2-49+4y^2-4xy=\left(x-2y\right)^2-49=\left(x-2y-7\right)\left(x-2y+7\right)\)

d) \(x^2-6x-16=\left(x^2-6x+9\right)-25=\left(x-3\right)^2-25=\left(x-3-5\right)\left(x-3+5\right)=\left(x-8\right)\left(x+2\right)\)

1 tháng 10 2021

a) 4x3y2−8x2y+12xy2=4xy(x2y−2x+3y)4x3y2−8x2y+12xy2=4xy(x2y−2x+3y)

b) 3x2−6xy−5x+10y=3x(x−2y)−5(x−2y)=(x−2y)(3x−5)3x2−6xy−5x+10y=3x(x−2y)−5(x−2y)=(x−2y)(3x−5)

c) x2−49+4y2−4xy=(x−2y)2−49=(x−2y−7)(x−2y+7)x2−49+4y2−4xy=(x−2y)2−49=(x−2y−7)(x−2y+7)

d) x2−6x−16=(x2−6x+9)−25=(x−3)2−25=(x−3−5)(x−3+5)=(x−8)(x+2)

Bài 1: 

a: \(x^2\left(3x+2\right)=3x^3+2x^2\)

b: \(\left(x-2\right)\left(3x^2-4x+1\right)\)

\(=3x^3-4x^2+x-6x^2+8x-2\)

\(=3x^2-10x^2+9x-2\)

c: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(x-3\right)\left(x+3\right)\)

\(=27x^3+8-x^2+9=27x^3-x^2+17\)

d: \(=\left(x+y-x-y+z\right)\left(x+y+x+y-z\right)\)

\(=z\left(2x+2y-z\right)\)

\(=2xz+2yz-z^2\)

28 tháng 9 2016

1:

a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)

b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

2

\(-2x^2-4x+6=0\)

\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow x^2-x+3x-3=0\)

\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)

28 tháng 9 2016

1,

a) x( x2 + 2x +1) = x(x+1)2

b)25 - (x-2y)= (5-x+2y)(5+x-2y)

2,

(x-1)(x+3)=0

<=>x=1 hoặc x=-3

 

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

\(b,B=3+2x+3x^2\)

\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)

Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)

\(c,C=4x+2x^2-3\)

\(=2\left(x^2+2x+1\right)-5\)

\(=2\left(x+1\right)^2-5\ge-5\)

Dấu = xảy ra \(\Leftrightarrow x=-1\)

Vậy \(Min_C=-5\Leftrightarrow x=-1\)

\(d,D=10x+6+x^2\)

\(=\left(x^2+10x+25\right)-19\)

\(=\left(x+5\right)^2-19\ge-19\)

Dấu = xảy ra \(\Leftrightarrow x=-5\)

Vậy \(Min_D=-19\Leftrightarrow x=-5\)

\(e,E=8x^2-6x+3\)

\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)

\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)

Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)

23 tháng 6 2019

a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2

Ta luôn có : (x - 1/2)2 \(\ge\)\(\forall\)x  --> 6(x  - 1/2)2 \(\ge\) 0 \(\)x

=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x

hay A \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2

Vậy Amin = -1/2 tại x = 1/2

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{6}\right)\)

\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)

\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Bài 1:

a:\(\Leftrightarrow x^2-6x+24=0\)

=>(x-3)^2+15=0(loại)

b: \(\Leftrightarrow\left(x-\sqrt{3}\right)^3=0\)

=>x-căn 3=0

=>x=căn 3

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

4 tháng 8 2016

a) 8x3 + 4x2 - y3 - y2 = (8x3 - y3) + (4x2 - y2)

Hỏi đáp Toán

b) x2 + 5x - 6

= x2 + 6x - x - 6

= x(x + 6) - (x + 6)

= (x + 6)(x - 1)

4 tháng 8 2016

a. 8x3+4x2-y3-y2

= (2x)3+(2x)2-y3-y2

=(2x)3-y3+(2x)2-y2

=(2x-y).(2x2+2xy+y2)+(2x-y)(2x+y)

=(2x-y)(2x2+2xy+y2+2x+y)

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

5 tháng 12 2017

Đăng ít thôi.

5 tháng 12 2017

~ bt làm hăm giúp mình câu 2+3