\(x^2-2.x.\frac{1}{2}+\left(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)

21 tháng 7 2019

TL:

\(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\) 

\(=3x.\left(x+2\right)\) 

16 tháng 8 2017

a) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

b) \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

16 tháng 8 2017

a, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)

\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)

\(=\left(x-2\right)\left(x+1\right)\)

b, \(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\)

\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}^2\)

\(=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)\)

\(=\left(x-2\right)\left(x+1\right)\)

Chúc bạn học tốt!!!

17 tháng 12 2019

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

10 tháng 10 2018

a) 9  -(x-y)2

= 32 - (x-y)2

= (3-x+y).(3+x-y)

b) (x2 +4)2 - 16x2

= (x2+4)2 - (4x)2

= (x2 + 4 -4x).(x2 + 4 +4x)

10 tháng 10 2018

      \(9-\left(x-y\right)^2\)

\(=3^2-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

      \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2+4\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\left(x+2\right)^2\)

5 tháng 10 2020

a) 16x2 - ( x2 + 4 )2

= ( 4x )2 - ( x2 + 4 )2

= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]

= ( -x2 + 4x - 4 )( x2 + 4x + 4 )

= [ -( x2 - 4x + 4 ) ]( x + 2 )2

= [ -( x - 2 )2 ]( x + 2 )2

b) ( x + y )3 + ( x - y )3

= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]

= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]

= 2x( 2x2 + 2y2 - x2 + y2

= 2x( x2 + 3y2 )

22 tháng 10 2016

Bài 1 :

a) \(x^8+x+1\)

\(=x^8-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)

b) \(64x^4+y^4\)

\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

16 tháng 10 2019

1, a^2 - 4b^2

= a^2 - (2b)^2

=(a-2b)(a+2b)

2,  1/4 a^2 - b^2

=(1/2a)^2 -b^2

=(1/2a-b)(1/2a+b)

16 tháng 10 2019

3,   (a-2b)^2 - (3a+b)^2

=  (a-2b-3a-b)(a-2b+3a+b)

=  (-2a-3b)(4a-b)