Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2y3 - 1/2x4y8 = x2y3( 1 - 1/2x2y5 )
b) a2b4 + a3b - abc = ab( ab3 + a2 - c )
c) 7x( y - 4 )2 - ( y - 4 )3 = ( y - 4 )2( 7x - y + 4 )
d) -x2y2z - 6x3y - 8x4z2 - x2y2z2 = -x2( y2z + 6xy + 8x2z2 + y2z2 )
e) x3 - 4x2 + x = x( x2 - 4x + 1 )
a) \(x^3+x^2+x-3\)
\(=\left(x^3+2x^2+3x\right)-\left(x^2+2x+3\right)\)
\(=x\left(x^2+2x+3\right)-\left(x^2+2x+3\right)\)
\(=\left(x-1\right)\left(x^2+2x+3\right)\)
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)
\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)
Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x-3\right)^2\)
a/ \(=x^4+x^3+x^2+5x^2+5x+5\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=\left(x^2+5\right)\left(x^2+x+1\right)\)
b/ \(=x^3+x^2+2x-x^2-x-2\)
\(=x\left(x^2+x+2\right)-\left(x^2+x+2\right)=\left(x-1\right)\left(x^2+x+2\right)\)
c/ \(=x^3+4x^2+4x-x^2-4x-4\)
\(=x\left(x^2+4x+4\right)-\left(x^2+4x+4\right)=\left(x-1\right)\left(x+2\right)^2\)
câu d khó quá , mk lm k nổi , sr nha ^^
a) x4 + x3 + 6x2 + 5x + 5
= x4 + x3 + x2 + 5x2 + 5x + 5
= x2 ( x2 + x + 1) + 5 (x2 + x + 1)
= (x2 + x + 1) (x2 + 5)
b) x3 + x - 2
= x3 + x2 + 2x - x2 - x - 2
= x (x2 + x + 2) - (x2 + x + 2)
= (x2 + x + 2) (x - 1)
c) x3 + 3x2 - 4
= x3 + 4x2 + 4x - x2 - 4x - 4
= x (x2 + 4x + 4) - (x2 + 4x + 4)
= (x2 + 4x + 4) (x - 1)
= (x + 2)2 (x - 1)
d) xy(x + y) + yz(y + z) + xz(x + z) + 3xyz
= xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + y + z)
= (x + y + z) (xy + yz + xz)
a) \(x^3+x^2+x-3\)
\(=x^3-x^2+2x^2-2x+3x-3\)
\(=x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+2x+3\right)\)
b) Xét \(x^4+6x^3+7x^2-6x+1=0\)
Dễ thấy x = 0 không thỏa mãn pt
\(x^4+6x^3+7x^2-6x+1\)
\(=x^2\left(x^2+6x+7-\frac{6}{x}+\frac{1}{x^2}\right)\)
\(=x^2\cdot\left(x^2-2+\frac{1}{x^2}+6x-\frac{6}{x}+9\right)\)
\(=x^2\left[\left(x-\frac{1}{x}\right)^2+6\left(x-\frac{1}{x}\right)+9\right]\)
\(=x^2\left(x-\frac{1}{x}+3\right)^2\)
\(=\left[x\left(x-\frac{1}{x}+3\right)\right]^2\)
c) \(x^8+x^4+1\)
\(=x^8+2x^4+1-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)\)
\(=\left[\left(x^2+1\right)^2-x^2\right]\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
d) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3x^2y+3xy^2+3xz^2+3x^2z+3y^2z+3yz^2+6xyz-x^3-y^3-z^3\)
\(=3\left(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
( cái này có kết quả rồi bạn tự phân tích được nhé )
e) \(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
em nghĩ câu b a nên viết thẳng ra \(\left(x^2+3x-1\right)^2\) thì nó sẽ hay hơn,đồng thời cái này nó vẫn đúng khi x = 0