K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)

b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)

c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)

22 tháng 11 2017

a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)

b.  \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)

c.  \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)

1: \(6x^2y-9xy^2+3xy\)

\(=3xy\left(2x-3y+1\right)\)

2: \(\left(4-x\right)^2-16\)

\(=\left(4-x-4\right)\left(4-x+4\right)\)

\(=-x\cdot\left(8-x\right)\)

3: \(x^3+9x^2-4x-36\)

\(=x^2\left(x+9\right)-4\left(x+9\right)\)

\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)

14 tháng 8 2021

1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)

2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)

3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)

11 tháng 8 2021

1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)

2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)

3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)

1) Ta có: \(x^3+2x^2-6x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

2: Ta có: \(9x^2+6x-4y^2-4y\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(3x+2y+2\right)\)

1 tháng 10 2018

a) x3 - 7x + 6

= x3 - 2x2 + 2x2 - 4x - 3x + 6

= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )

= ( x - 2 ) ( x2 + 2x - 3 )

= ( x - 2 ) ( x2 - x + 3x - 3 )

= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ] 

= ( x - 2 ) ( x - 1 ) ( x + 3 )

b ) x3 - 9x2 + 6x + 16

= x3 - 8x2 - x2 + 8x - 2x + 16

= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )

= ( x - 8 ) ( x2 - x - 2 )

= ( x - 8 ) ( x2 + x - 2x - 2 )

= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]

= ( x - 8 ) ( x + 1 ) ( x - 2 )

c ) x3 - 6x2 - x + 30

= x3 - 5x2 - x2 + 5x - 6x + 30

= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )

= ( x - 5 ) ( x2 - x - 6 )

= ( x - 5 ) ( x2 - 3x + 2x - 6 )

= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]

= ( x - 5 ) ( x - 3 ) ( x + 2 )

d ) 2x3 - x2 + 5x + 3

= 2x3 + x2 - 2x2 - x + 6x + 3

= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )

= ( 2x + 1 ) ( x2 - x + 3 )

12 tháng 8 2018

a)  \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

b)  \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

22 tháng 11 2017

a, = (x^3-x^2)-(4x^2-4x)+(4x-4)

    = (x-1).(x^2-4x+4) = (x-1).(x-2)^2

b, = (x^3+x^2)-(10x^2+10x)+(16x+16)

 = (x+1).(x^2-10x+16)

 = (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)

k mk nha

a)= (x^3-x^2)-(4x^2-4x)+(4x-4)

    = (x-1).(x^2-4x+4)

    = (x-1).(x-2)^2

b)= (x^3+x^2)-(10x^2+10x)+(16x+16)

 = (x+1).(x^2-10x+16)

 = (x+1).[ (x^2-2x)-(8x-16) ]

 = (x+1).(x-2).(x-8)

P/s tham khảo nha

15 tháng 8 2015

 

5x^2+10xy+5y^2

=5.(x2+2xy+y2)

=5.(x+y)2

x^3-6x^2+9x

=x.(x2-6x+9)

=x.(x-3)2

xy+y^2-x-y

=y.(x+y)-(x+y)

=(x+y)(y-1)

 

15 tháng 8 2015

haha bạn ấy nhấn  đúng cho tui nè

18 tháng 8 2017

\(x^3+9x^2+6x-16\)

\(=x^3+x^2-2x+8x^2+8x-16\)

\(=x\left(x^2+x-2\right)+8\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x+8\right)\)

\(=\left(x^2-x+2x-2\right)\left(x+8\right)\)

\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x+8\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x+8\right)\)