Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^3+1\)
\(=x^8-x^4+4x^4+4\)
\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
\(=x^2+x+2x+2=x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(x+2\right)\)
`#3107.101107`
`x(y - 1) + 3(y - 1)`
`= (x + 3)(y - 1)`
x(y-1)+3(y-1)
=(y-1)(x+3)
Giải thích: đặt y-1 ra làm chung .... đa thức còn x+3
\(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2-1\right)\)
\(=\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\left(x^2-y^2-1\right)\)
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
x2 + xy + 5x + 5y = ( x2 + xy ) + ( 5x + 5y ) = x( x + y ) + 5( x + y ) = ( x + y )( x + 5 )
x2 - y2 + 3x - 3y = ( x2 - y2 ) + ( 3x - 3y ) = ( x - y )( x + y ) + 3( x - y ) = ( x - y )( x + y + 3 )
x² + xy + 5x + 5y
= (x²+ xy) + ( 5x+5y)
= x(x+y) + 5(x+y)
= (x+y)(x+5)
x² - y² + 3x - 3y
= (x² - y²) + ( 3x -3y)
= (x-y)(x+y) + 3(x-y)
= (x-y)(x+y+3)
chúc bạn học tốt ^^