K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=5xy\left(x^2-2xy+y^2\right)=5xy\left(x-y\right)^2\)

b: \(=2x^2+10x-3x-15\)

\(=2x\left(x+5\right)-3\left(x+5\right)=\left(x+5\right)\left(2x-3\right)\)

6 tháng 1 2022

thanks

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....

17 tháng 1 2018

[(x+2)(x+5)][(x+3)(x+4)] -24

= (x2+7x+10)(x2+7x+12) -24

=(x2+7x+11-1)(x2+7x+11+1) -24

=(x2+7x+11)2-1-24

=(x2+7x+11)2 -25

=(x2+7x+11-5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)

17 tháng 1 2018

cảm ơn nhiều nha

17 tháng 1 2018

Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)

\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Vậy x=5 hoặc x = -6

2 tháng 4 2017

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

2 tháng 4 2017

em bó tay.com. vn

em mới lớp 5 thui chị ơi

19 tháng 12 2017

Bài 2 : Phân tích đa thức thành nhân tử

a) \(8x^2-2\)

\(=2\left(4x^2-1\right)\)

\(=2.\left(2x-1\right)\left(2x+1\right)\)

b) \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3+y\right)\left(x-3-y\right)\)

19 tháng 12 2017

1. Tính giá trị biểu thức :

\(Q=x^2-10x+1025\)

\(Q=\left(x^2-2.x.5+25\right)+1000\)

\(Q=\left(x-5\right)^2+1000\)

Thay x=1005 vào biểu thức trên ta có :

\(Q=\left(1005-5\right)^2+1000\)

\(Q=1000000+1000\)

\(Q=1001000\)

9 tháng 6 2017

Rình mãi ms được 1 câu!

Bài 3:

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(A=\left[\left(x+1\right).\left(x+7\right)\right].\left[\left(x+3\right).\left(x+5\right)\right]+15\)

\(A=\left(x^2+7x+x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(A=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\Rightarrow t+8=x^2+8x+15\)

\(\Rightarrow A=t.\left(t+8\right)+15\)

\(A=t^2+8t+15=t^2+3t+5t+15\)

\(A=\left(t^2+3t\right)+\left(5t+15\right)=t.\left(t+3\right)+5.\left(t+3\right)\)

\(A=\left(t+3\right).\left(t+5\right)\)

\(t=x^2+8x+7\) nên

\(A=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(A=\left(x^2+8x+10\right).\left[\left(x^2+2x\right)+\left(6x+12\right)\right]\)

\(A=\left(x^2+8x+10\right).\left[x.\left(x+2\right)+6.\left(x+2\right)\right]\)

\(A=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

Chúc bạn học tốt!!!

9 tháng 6 2017

học tốt gì ?????????

6 tháng 3 2020

Bài 1 :

\(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(ĐKXĐ:x\ne3\right)\)

\(\Leftrightarrow5\left(x^3-9x\right)=-\left(x^2+3x\right)\left(15-5x\right)\)

\(\Leftrightarrow5x^3-45x=5x^3-45\) ( luôn đúng )

Do đó : \(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(x\ne3\right)\)

P/s : Bài này thì xét tích chéo của hai số thôi nhé @

15 tháng 8 2018

 a,  \(3x^3-4x^2+5x-4\)

\(=3x^3-3x^2-x^2+x+4x-4\)

\(=3x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(3x^2-x+4\right)\left(x-1\right)\)

b,   \(4x^3-3x^2+5x-21\)

\(=4x^3-7x^2+4x^2-7x+12x-21\)

\(=x^2\left(4x-7\right)+x\left(4x-7\right)+3\left(4x-7\right)\)

\(=\left(x^2+x+3\right)\left(4x-7\right)\)

c,   \(3x^3+8x^2+14x+15\)

\(=3x^3+5x^2+3x^2+5x+9x+15\)

\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)

\(=\left(x^2+x+3\right)\left(3x+5\right)\)

Bài này dùng phương pháp nhẩm nghiệm (tối ưu nhất với đa thức bậc ba)

Chúc bạn học tốt.