K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)

=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k

=3(3k^2+2k) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 1(n>2)

*Voi n=3p+2(dk cua p)

=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1

=9p^2+12p+3

=3(3p^2+4p+1) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 2(n>2)

=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3

=>n^2-1 và n^2+1 ko thể đồng thời là

số nguyên tố voi n>2;n ko chia hết cho 3

26 tháng 2 2022

 đó nha bạn xin lỗi vì mới bt :<<

đó nha bạn

undefined

cả 2 số ko thể là số nguyên tố được vì ta có 2^n−1,2n,2^n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 

mà 2n không chia hết cho 3 nên trong 2 số  2^n−1,2^n+1 có 1 số chia hết cho 3 và lớn hơn 3 (do n>2)

vậy 2 số trên ko đồng thời là số nguyên tố

^ là mũ  nhé

30 tháng 10 2015

OFO1 tự hỏi rồi cop mạng tự trả lời à ?      

30 tháng 10 2015

*Voi n=3k+1(dk cua k) 
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k 
=3(3k^2+2k) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 1(n>2) 
*Voi n=3p+2(dk cua p) 
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1 
=9p^2+12p+3 
=3(3p^2+4p+1) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 2(n>2) 
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3 
=>n^2-1 và n^2+1 ko thể đồng thời là 
số nguyên tố voi n>2;n ko chia hết cho 3

 

24 tháng 9 2021

Do \(n>3\) và không chia hết cho 3

\(\Rightarrow\)\(n^2>3\) và không chia hết cho 3.

Xét 3 số tự nhiên liên tiếp \(n^2-1;n^2;n^2+1\)có:

\(n^2\)không chia hết cho \(3\)

\(\Rightarrow\) 1 trong 2 số \(n^2-1,n^2+1⋮3\) sẽ chia hết cho 3 (không xảy ra TH 2 số cùng chia hết cho 3)

\(\Rightarrow\) 1 trong 2 số là số nguyên tố (không thể cùng là số nguyên tố vì ko cùng chia hết cho 3)

 Vậy \(n^2-1,n^2+1\) không thể đồng thời là số nguyên tố.