Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n không chia hết cho 3 => n2 không chia hết cho 3
Xét 3 số tự nhiên liên tiếp: n2 - 1;n2; n2 + 1
Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 + 1 chia hết cho 3 => 1 trong 2 số đó có 1 số là hợp số
Vậy n2 - 1 và n2 + 1 không đồng thời là số nguyên tố
*với n chẵn
2^n=4^t
nếu t chẵn 4^t tận cùng luôn =6 vậy 2^n-1 luôn chia hết cho 5
nếu t lẻ 4^t tận cùng luôn =4 vậy 2^n+1 luôn chia hết cho 5
*với n lẻ
2^n=2^(2t+1 )=2.4^t chia 3 luôn dư 2 => 2^n+1 chia hết cho 3
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
cả 2 số ko thể là số nguyên tố được vì ta có 2^n−1,2n,2^n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
mà 2n không chia hết cho 3 nên trong 2 số 2^n−1,2^n+1 có 1 số chia hết cho 3 và lớn hơn 3 (do n>2)
vậy 2 số trên ko đồng thời là số nguyên tố
^ là mũ nhé
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
Do \(n>3\) và không chia hết cho 3
\(\Rightarrow\)\(n^2>3\) và không chia hết cho 3.
Xét 3 số tự nhiên liên tiếp \(n^2-1;n^2;n^2+1\)có:
\(n^2\)không chia hết cho \(3\)
\(\Rightarrow\) 1 trong 2 số \(n^2-1,n^2+1⋮3\) sẽ chia hết cho 3 (không xảy ra TH 2 số cùng chia hết cho 3)
\(\Rightarrow\) 1 trong 2 số là số nguyên tố (không thể cùng là số nguyên tố vì ko cùng chia hết cho 3)
Vậy \(n^2-1,n^2+1\) không thể đồng thời là số nguyên tố.