K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

tém lại chút đi

Dễ thấy \(100^{80}⋮50\) ,đặt \(100^{80}=50t\) với t là số chẵn

Ta có:\(302\equiv52\)(mod 125)\(\Rightarrow302^5\equiv52^5=26^5.2^5=26^5.32\equiv32\)(mod 125)
\(\Rightarrow302^{10}\equiv32^2\equiv24\)(mod 125) \(\Rightarrow302^{50}\equiv24^5\equiv-1\)(mod 125)
Khi đó:\(302^{100^{80}}=302^{50t}=\left(302^{50}\right)^t\equiv\left(-1\right)^t=1\)(mod 125) do t là số chẵn
 

20 tháng 6 2019

số dư cua phép đó là 80

k mik nha

19 tháng 6 2019

giai lai

\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)

Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)

\(\Rightarrow3^{506^{80}}=3^{4k}\)

Ta có:

\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)

\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)

\(\Rightarrow3^{4k}-6⋮5\)(2)

Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1

Vậy...

19 tháng 6 2019

nhầm dòng gần cuối 34k-6 :(( 

 Lưu ý rằng 1001 = 7 * 11 * 13. 

(i) Mod hoạt động 7 
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 6 = 1 (mod 7) 
==> 300 ^ 3000 = (300 ^ 6) ^ 500 = 1 ^ 500 = 1 (mod 7). 
Do đó, 300 ^ 3000 - 1 chia hết cho 7. 

(ii) Mod hoạt động 11 
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 10 = 1 (mod 11) 
==> 300 ^ 3000 = (300 ^ 10) ^ 300 = 1 ^ 300 = 1 (mod 11). 
Do đó, 300 ^ 3000 - 1 chia hết cho 11. 

(iii) Mod hoạt động 13 
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 12 = 1 (mod 13) 
==> 300 ^ 3000 = (300 ^ 12) ^ 250 = 1 ^ 250 = 1 (mod 13). 
Do đó, 300 ^ 3000 - 1 chia hết cho 13. 

Vì 1001 = 7 * 11 * 13 và 7, 11 và 13 là cặp tương đối nguyên tố, 
chúng tôi kết luận rằng 300 ^ 3000 - 1 chia hết cho 1001

301 = 7 * 43, 

vì vậy 300 ≡ -1 (mod 7) 

Sau đó 300 ^ 3000 - 1 (-1) ^ 3000 - 1 ≡ 1 - 1 ≡ 0 (mod 7) 

Vậy 7 chia 300 ^ 3000 - 1 



297 = 27 * 11, 

vì vậy 300 ≡ 3 (mod 11) 

Sau đó, 
300 ^ 3000 - 1 3 ^ 3000 - 1 ≡ (3 ^ 5) ^ 600 - 1 (mod 11) 

Nhưng 3 ^ 5 = 243 = 22 * ​​11 + 1 
so 3 ^ 5 1 (mod 11) 

Sau đó 
300 ^ 3000 - 1 (3 ^ 5) ^ 600 - 1 ≡ 1 ^ 600 - 1 ≡ 0 (mod 11) 

Vì vậy, 11 chia 300 ^ 3000 - 1 



Cuối cùng, 299 = 23 * 13, 

vì vậy 300 1 (mod 13) 

Sau đó 
300 ^ 3000 - 1 1 ^ 3000 - 1 ≡ 0 (mod 13) 

Vì vậy, 13 chia 300 ^ 3000 - 1 


Vì 7, 11, 13 đều là số nguyên tố, nó theo đó là sản phẩm của họ, 1001 chia 300 ^ 3000 - 1

5 tháng 12 2016

Câu 3: 824

11 tháng 12 2016

Câu 1:13

Câu 2:36

Câu 3:824

22 tháng 1 2018

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)

Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)

\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)

Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)

Ta cũng có:

\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)

Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)

Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\)  và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)

Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5

22 tháng 7 2018

Phần (c-b)x sai phải là (c-b+a-ax)x

26 tháng 6 2018

Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)

Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)

Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)

\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)

Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)

Ta cũng có :

\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)

Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)

Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)

Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0
3 tháng 10 2016

bạn giải luôn đi

để mk tham khảo

Bài này của lp 8

mà mk mới hok lp 7

=> mk xem bn làm để năm sau mk hok cách làm