Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giai lai
\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)
Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)
\(\Rightarrow3^{506^{80}}=3^{4k}\)
Ta có:
\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)
\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)
\(\Rightarrow3^{4k}-6⋮5\)(2)
Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1
Vậy...
Lưu ý rằng 1001 = 7 * 11 * 13.
(i) Mod hoạt động 7
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 6 = 1 (mod 7)
==> 300 ^ 3000 = (300 ^ 6) ^ 500 = 1 ^ 500 = 1 (mod 7).
Do đó, 300 ^ 3000 - 1 chia hết cho 7.
(ii) Mod hoạt động 11
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 10 = 1 (mod 11)
==> 300 ^ 3000 = (300 ^ 10) ^ 300 = 1 ^ 300 = 1 (mod 11).
Do đó, 300 ^ 3000 - 1 chia hết cho 11.
(iii) Mod hoạt động 13
Theo Định lý nhỏ của Fermat, chúng ta có 300 ^ 12 = 1 (mod 13)
==> 300 ^ 3000 = (300 ^ 12) ^ 250 = 1 ^ 250 = 1 (mod 13).
Do đó, 300 ^ 3000 - 1 chia hết cho 13.
Vì 1001 = 7 * 11 * 13 và 7, 11 và 13 là cặp tương đối nguyên tố,
chúng tôi kết luận rằng 300 ^ 3000 - 1 chia hết cho 1001
301 = 7 * 43,
vì vậy 300 ≡ -1 (mod 7)
Sau đó 300 ^ 3000 - 1 (-1) ^ 3000 - 1 ≡ 1 - 1 ≡ 0 (mod 7)
Vậy 7 chia 300 ^ 3000 - 1
297 = 27 * 11,
vì vậy 300 ≡ 3 (mod 11)
Sau đó,
300 ^ 3000 - 1 3 ^ 3000 - 1 ≡ (3 ^ 5) ^ 600 - 1 (mod 11)
Nhưng 3 ^ 5 = 243 = 22 * 11 + 1
so 3 ^ 5 1 (mod 11)
Sau đó
300 ^ 3000 - 1 (3 ^ 5) ^ 600 - 1 ≡ 1 ^ 600 - 1 ≡ 0 (mod 11)
Vì vậy, 11 chia 300 ^ 3000 - 1
Cuối cùng, 299 = 23 * 13,
vì vậy 300 1 (mod 13)
Sau đó
300 ^ 3000 - 1 1 ^ 3000 - 1 ≡ 0 (mod 13)
Vì vậy, 13 chia 300 ^ 3000 - 1
Vì 7, 11, 13 đều là số nguyên tố, nó theo đó là sản phẩm của họ, 1001 chia 300 ^ 3000 - 1
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)
Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)
Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)
\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)
Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)
Ta cũng có :
\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)
Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)
Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)
Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5
tém lại chút đi
Dễ thấy \(100^{80}⋮50\) ,đặt \(100^{80}=50t\) với t là số chẵn
Ta có:\(302\equiv52\)(mod 125)\(\Rightarrow302^5\equiv52^5=26^5.2^5=26^5.32\equiv32\)(mod 125)
\(\Rightarrow302^{10}\equiv32^2\equiv24\)(mod 125) \(\Rightarrow302^{50}\equiv24^5\equiv-1\)(mod 125)
Khi đó:\(302^{100^{80}}=302^{50t}=\left(302^{50}\right)^t\equiv\left(-1\right)^t=1\)(mod 125) do t là số chẵn
số dư cua phép đó là 80
k mik nha