Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Sử dụng lí thuyết về giao thoa sóng hai nguồn cùng pha
Cách giải:
Bước sóng: λ = vT = 5cm
Phương trình sóng giao thoa tại M: u M = 2 a . cos π ( d 2 - d 1 ) λ cos 20 π t - π ( d 2 + d 1 ) λ
+ M dao động với biên độ cực đại nên: d 2 - d 1 = m λ = 5 m < A B ⇒ m < 3 , 6
M dao động cùng pha với nguồn nên:
π ( d 2 + d 1 ) λ = 2 n π ⇒ d 2 + d 1 = 2 n λ = 10 n > A B ⇒ n > 1 , 8
Từ (1) và (2) ⇒ d 1 = 2 n λ - m λ 2 = ( 2 n - m ) . 2 , 5
M gần A nhất nên d1 nhỏ nhất ⇔ n m i n = 2 m m a x = 3 ⇒ d l m i n = ( 2 . 2 - 3 ) . 2 , 5 = 2 , 5 c m
2 điểm S1,S2 cung pha,giữa chúng có 10 điểm không dao động nghĩa là 10 điểm này cũng cùng pha với 2 nguồn. Với 10 điểm ở giữa sẽ chia AB thành 11 đoạn,10 điểm này lại cùng pha,khoảng cách giữa 2 điểm cùng pha gần nhất là lamda, vậy 11lamda=11=> lamda=1,v=f.lamda=26 B
Vị trí cực đại giao thoa với hai nguồn cùng pha thỏa mãn điều kiện: \(d_1-d_2=k\lambda\)
Đường cực đại thứ nhất đi qua M1 thỏa mãn: \(d_1-d_2=1.\lambda=16cm\)(1)
Đường cực đại thứ 5 đi qua M2 thỏa mãn: \(d_1'-d_2'=5\lambda=24cm\)(2)
Lấy (2) - (1) vế với vế ta được: \(4\lambda=8\Leftrightarrow\lambda=2cm\)
Vận tốc: \(v=\lambda.f=2.10=20\)(cm/s)
Bạn sử dụng điều kiện cực đại giao thoa của 2 dao động cùng pha.
\(\triangle\varphi =0.\)
\(\lambda = v/f = 2cm.\)
Số điểm dao động với biên độ cực tiểu trên đoạn thẳng nối hai nguồn cùng pha là:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -20 < (2k+1+0)\lambda/2 < 20 \\ \Rightarrow -10,5 < k < 9,5. \\ \Rightarrow k = -10,-9,\ldots,0,1,\ldots,9.\)
Có 20 điểm.
Ta có \(\lambda=\frac{v}{f}=\frac{200}{10}=20\left(cm\right)\). Do M là một cực đại giao thoa nên để đoạn AM có giá trị lớn nhất thì M phải nằm trên vân cực đại bậc 1 như hình vẽ ở dưới và thõa mãn:
\(d_2-d_1=k\lambda=1.20=20\left(cm\right)\) (1). ( do lấy k= +1)
Mặt khác, do tam giác AMB là tam giác vuông tại A nên ta có :
\(BM=d_2=\sqrt{\left(AB\right)^2+\left(AM\right)^2}=\sqrt{40^2+d^2_1}\) (2). Thay (2) vào (1)
ta được : \(\sqrt{40^2+d^2_1}-d_1=20\Rightarrow d_1=30\left(cm\right)\)
\(\rightarrow\) Đáp án B
\(\lambda = v/f = 2cm.\)
Số điểm dao động cực đại thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -10 < k\lambda < 10. \\ \Rightarrow -5 < k < 5.\\ \Rightarrow k = -4,-3,-2,-1,0,1,2,3,4.\)
Có 9 điểm dao động với biên độ cực đại.
Số điểm dao động cực tiểu thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -10 < (2k+1)\lambda/2 < 10 \\ \Rightarrow -5,5 < k < 4,5 \\ \Rightarrow k = -5,-4,-3,-2,-1,0,1,2,3,4.\)
Có 10 điểm dao động với biên độ cực tiểu.
Đáp án C
+ Hai điểm M, N dao động vuông pha với nhau, do M gần nguồn sóng hơn nên khi N ở vị trí thấp nhất thì M đã đạt trạng thái thấp nhất trước đó t = T 4 Vậy thời gian ngắn nhất để M chuyển trạng thái như N là t ' = 3 T 4 = 3 4 f = 3 80 s
Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)
\(\triangle\varphi = 0\)
Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)
Để biên độ sóng tại M
\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)
=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)
\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)
=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)
M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)
\(-O_1O_2 < d_2-d_1 < O_1O_2\)
Thay (1) vào ta được
\(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)
=> \(-1,745 < k < 1,455\)
=> \(k = -1,0,1.\)
\(\lambda = v.T = \frac{v}{f}=\frac{50}{10}=5cm.\)
Tại M: \(d_{2M}-d_{1M}=18-3=15=3.5\) => M dao động mạnh nhất.
Tại N: \(d_{2N}-d_{1N}=45-10=35=7.5\) => N dao động mạnh nhất.