K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Vào link này nhé ,mình tìm cả max và min luôn

https://olm.vn/hoi-dap/detail/221940896077.html

Hoặc trong câu hỏi tương tự cũng có 

NV
23 tháng 5 2019

Câu 1:

\(4x^2+8xy+28x+28y+8y^2+40=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2+4y^2-9=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2=9-4y^2\le9\)

\(\Rightarrow-3\le2x+2y+7\le3\)

\(\Leftrightarrow-8\le2y+2y+2\le-2\)

\(\Rightarrow-4\le x+y+1\le-1\)

\(\Rightarrow S_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

\(S_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Câu 2:

\(x^2+y^2=6xy\Rightarrow\frac{x}{y}+\frac{y}{x}=6\)

Đặt \(\frac{x}{y}=a>1\Rightarrow a+\frac{1}{a}=6\Rightarrow a^2-6a+1=0\Rightarrow a=3+2\sqrt{2}\)

\(\Rightarrow P=\frac{x+y}{x-y}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{a+1}{a-1}=\frac{3+2\sqrt{2}+1}{3+2\sqrt{2}-1}=\sqrt{2}\)

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

10 tháng 11 2015

x2-2y2=xy

<=> (x-y)(x+y)=y(x+y)

Because y different from 0 

=> y=x-y

<=> x=2y

=> Replace x by 2y

We have : the value of the A is 1/3

:v Mình đùa chút ^^ Đừng giận nha 

10 tháng 11 2015

mình đã làm được rồi , mọi người không cần đăng trả lợi nữa đâu ạ , xin cảm ơn !!!

22 tháng 5 2018

Nguyên việt hiếu tự đặng tự trả lời nice  :)) 

22 tháng 5 2018

ê hiếu  t có 1 cách nhưng mà bị ngược dấu :))  có cần t làm ko :))))

19 tháng 9 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2xyz}{xyz}=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

22 tháng 12 2014

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2