Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
b) ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+y\right)^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
- Thay \(x^2+y^2=1\)
\(\Rightarrow\)\(2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
- Áp dụng bđt: \(a^2+b^2+c^2\ge ab+bc+ac\)
có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
- Áp dụng tiếp bđt trên
có: \(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+c^2ab\) (2)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (3)
(1),(2),(3)\(\Rightarrow\) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
Vào link này nhé ,mình tìm cả max và min luôn
https://olm.vn/hoi-dap/detail/221940896077.html
Hoặc trong câu hỏi tương tự cũng có