Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: -21\(\le x\le\)21
Đặt \(\left\{{}\begin{matrix}\sqrt{21+x}=a\\\sqrt{21-x}=b\end{matrix}\right.\left(a,b\ge0\right)\) (a\(\ne\)b)
Ta có \(\left\{{}\begin{matrix}21+x=a^2\\21-x=b^2\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}a^2+b^2=42\\a^2-b^2=2x\end{matrix}\right.\)
Pt đã cho trở thành \(\dfrac{a+b}{a-b}=\dfrac{a^2+b^2}{a^2-b^2}\)
<=> \(\left(a+b\right)^2\)(a-b)=(\(a^2+b^2\))(a-b)
<=> (a-b)2ab=0
\(\text{}\text{}\left[{}\begin{matrix}a=b\left(loai\right)\\a=0\left(tm\right)\\b=0\left(tm\right)\end{matrix}\right.\)
Thay vào ta tìm dc S=\(\left\{21,-21\right\}\)
Chắc dưới mẫu bạn ghi nhầm căn đầu tiên
ĐKXĐ: \(-21\le x\le21;x\ne0\)
\(\Leftrightarrow\frac{\left(\sqrt{21+x}+\sqrt{21-x}\right)^2}{21+x-21+x}=\frac{21}{x}\)
\(\Leftrightarrow\frac{42+2\sqrt{21^2-x^2}}{2x}=\frac{21}{x}\)
\(\Leftrightarrow\sqrt{21^2-x^2}=0\)
\(\Rightarrow x=\pm21\)
\(y=\left(5-\sqrt{21}\right)^x+7\left(5+\sqrt{21}\right)^x\)
ta tính y'>0
hàm đồng biến
mặt khác g=\(2^{x+3}\)
tính g'>0
là hàm đồng biến
mà x=0 là 1 nghiệm của pt
suy ra x=0 là nghiệm duy nhất của pt
Ta có: \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\Rightarrow B>0\)
\(B^2=\left(x+3\right)\left(7-x\right)+\left(x+2\right)\left(5-x\right)-2\sqrt{\left(x+3\right)\left(7-x\right)\left(x+2\right)\left(5-x\right)}=\left(\sqrt{\left(x+3\right)\left(5-x\right)}-\sqrt{\left(x+2\right)\left(7-x\right)}\right)^2+2\ge2\)
\(\Rightarrow B\ge\sqrt{2}\)
GTNN của B là \(\sqrt{2}\Leftrightarrow x=\dfrac{1}{3}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)