Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy số cần tìm là số có bốn chữ số.
Đặt số cần tìm là \(\overline{abcd}\).
\(a=1\)hoặc \(a=2\).
Với \(a=1\):
\(\overline{1bcd}+1+b+c+d=1001+\overline{bcd}+b+c+d=2015\)
\(\Leftrightarrow\overline{bcd}+b+c+d=1014\)
\(\Leftrightarrow\overline{bcd}=1014-b-c-d\ge1014-9-9-9=987\)
Suy ra \(b=9\).
\(\overline{9cd}=1014-9-c-d\Leftrightarrow\overline{cd}=105-c-d\ge105-9-9=87\)
suy ra \(c=8\)hoặc \(c=9\).
Từ đây suy ra \(c=9,d=3\)thỏa mãn.
Ta có số: \(1993\).
Với \(a=2\):
\(\overline{2bcd}+2+b+c+d=2015\)
Dễ thấy \(b=0\).
suy ra \(\overline{cd}+2000+2+0+c+d=2015\Leftrightarrow\overline{cd}+c+d=13\)
suy ra \(c=d=1\).
Ta có số: \(2011\).
Vậy ta có hai số thỏa mãn ycbt là \(1993,2011\).
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
tổng của n và các chữ số của n=2023
=>n là số có 4 chữ số nên n có dạng abcd(0<a<9;0<b,c,d<9)
Ta có:abcd+a+b+c+d=2023
=>1000xa+100xb+10xc+d+a+b+c+d=2023
=>1001xa+101xb+11xc+2xd=2023
*)Nếu a=2 b=1 =>1001xa+101xb>2023
=>a=1
=>101xb+11xc+2xd=2023-1001=1022
Nếu b=8 c=9 d=9 =>101x8+11x9+2x9<1022
=>b=9=>11xc+2xd=1022-9x101=113
Nếu c=8 d=9 =>8x11+2x9<113
=>c=9
=>2xd=113-11x9=14
=>d=7
Vậy số cần tìm là 1997
ổng của n và các chữ số của n=2023
=>n là số có 4 chữ số nên n có dạng abcd(0<a<9;0<b,c,d<9)
Ta có:abcd+a+b+c+d=2023
=>1000xa+100xb+10xc+d+a+b+c+d=2023
=>1001xa+101xb+11xc+2xd=2023
*)Nếu a=2 b=1 =>1001xa+101xb>2023
=>a=1
=>101xb+11xc+2xd=2023-1001=1022
Nếu b=8 c=9 d=9 =>101x8+11x9+2x9<1022
=>b=9=>11xc+2xd=1022-9x101=113
Nếu c=8 d=9 =>8x11+2x9<113
=>c=9
=>2xd=113-11x9=14
=>d=7
Vậy số cần tìm là 1997