Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:
Phân tích và giải
Dễ thấy: Dấu "=" khi \(a=b=c=1\)
\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)
Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
Ta sẽ chia làm 2 bước cm:
B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :
\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)
\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)
\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)
\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)
Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))
\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)
B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)
Tự cm nhé Goodluck :v
Từng sau em hạn chế đăng nhiều bài cùng một lúc như thế này nhé.
Bài 1:
Ta có: \(a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
Áp dụng BĐT AM-GM cho các số không âm ta có:
\((a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}\geq 4\sqrt[4]{\frac{4(a-b)(b+1)^2}{4(a-b)(b+1)^2}}=4\)
\(\Rightarrow a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4-1\)
\(\Leftrightarrow a+\frac{4}{(a-b)(b+1)^2}\geq 3\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\)
\(\Leftrightarrow a=2; b=1\)
Bài 2:
Đặt \(\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)\mapsto (x,y,z)\Rightarrow xyz=1\)
BĐT cần chứng minh tương đương với:
\(x^2+y^2+z^2\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x^2+y^2+z^2\geq \frac{xy+yz+xz}{xyz}=xy+yz+xz(*)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2xy\)
\(y^2+z^2\geq 2\sqrt{y^2z^2}=2yz\)
\(z^2+x^2\geq 2\sqrt{z^2x^2}=2zx\)
Cộng theo vế: \(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Leftrightarrow x^2+y^2+z^2\geq xy+yz+xz\)
Do đó (*) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
Bài 3:
Ta có: \(\text{VT}=(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})+(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}})\)
Áp dụng BĐT Bunhiacopxky:
\((\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (\sqrt{b}+\sqrt{c}+\sqrt{a})^2\)
\(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}(1)\)
Áp dụng BĐT AM-GM:
\(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\geq 3\sqrt[3]{\frac{abc}{\sqrt{abc}}}=3(2)\) do $abc=1$
Từ \((1); (2)\Rightarrow \text{VT}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{b\left(c+1\right)}+\dfrac{c+1}{4}+\dfrac{b}{2}\ge3\sqrt[3]{\dfrac{a^3}{b\left(c+1\right)}\cdot\dfrac{c+1}{4}\cdot\dfrac{b}{2}}\)
\(=3\sqrt[3]{\dfrac{a^3}{4\cdot2}\cdot\dfrac{c+1}{c+1}\cdot\dfrac{b}{b}}=3\sqrt[3]{\dfrac{a^3}{8}}=\dfrac{3a}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{c\left(a+1\right)}\ge\dfrac{3b}{2};\dfrac{c^3}{a\left(b+1\right)}\ge\dfrac{3c}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\dfrac{a+b+c+3}{4}+\dfrac{a+b+c}{2}\ge\dfrac{3a+3b+3c}{2}\)
\(\Leftrightarrow VT+\dfrac{3\left(a+b+c\right)}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow VT+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\). Mà theo AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}=3\)\(\Rightarrow VT+\dfrac{3}{4}\ge\dfrac{9}{4}\Rightarrow VT\ge\dfrac{3}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c=1\)
câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)