K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Gọi độ dài các cạnh lần lượt là x, y, z

Trong một tam giác, độ dài đường cao tỉ lệ nghịch với độ dài cạnh nên ta có:

\(x\div y\div z=\dfrac{1}{12}\div\dfrac{1}{15}\div\dfrac{1}{20}\)

\(\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)

\(\Rightarrow12x=15y=20z\)

\(12x=15y\Rightarrow\dfrac{x}{15}=\dfrac{y}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\) (1)

\(15y=20z\Rightarrow\dfrac{y}{20}=\dfrac{z}{15}\Rightarrow\dfrac{y}{4}=\dfrac{z}{3}\) (2)

Từ (1) (2) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\Rightarrow x=5\cdot5=25\\\dfrac{y}{4}=5\Rightarrow y=5\cdot4=20\\\dfrac{z}{3}=5\Rightarrow z=5\cdot3=15\end{matrix}\right.\)

Vậy ...

18 tháng 3 2017

GP là điểm số được học 24h đánh đúng . Còn SP là điểm số mà các thành viên tham gia học trực tuyến 24h đánh đúng đó ok

18 tháng 3 2017

hoc24 not học 24h

tham gia web thỳ làm ơn viết đúng cái tên dùm!

11 tháng 6 2017

F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|

Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:

F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50

=> F\(\ge\)50 => \(Min_F=50\)

P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?

11 tháng 6 2017

\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)

\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)

\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)

(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)

\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)

\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............

\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)

Dấu "=" sảy ra khi:

\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)

Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)

Mình cũng không chắc đâu! Chúc bạn học tốt!!!

19 tháng 4 2017

lớp mấy nhỉ

19 tháng 4 2017

đăng lớp nào thì thi lớp đó có thế mà cũng hỏi

1 tháng 2 2017

hé hé bạn mik ớ ngân giới tính rất linh hoạt

P/s : đầu óc bạn thì ko đc linh hoạt bởi tên ngân còn hỏi là trai hay gái

1 tháng 2 2017

nghé z

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

28 tháng 4 2017

2n+3 + 2n+2 - 2n+1 + 2n = 2n.23 + 2n.22 - 2n.2 + 2n

= 2n.(23 + 22 - 2 + 1)

= 2n.11

23 tháng 7 2017

sửa lại đề nè:

So sánh: 291 và 535

Ta có: 291 = (213)7 = 81927

535 = (55)7 = 31257

Vì 81927>31257

=> 291>535

23 tháng 7 2017

Tui lỡ viết lộn

30 tháng 10 2017

Trả lời đi nào

30 tháng 10 2017

bạn ơi đề thiếu

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)