Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này chúng tớ làm nhiều rùi
neu cau noi the thi thui
Vì ba số tự nhiên liên tiếp nhân lại chia hết cho 3 nên chắc chắn, sẽ có một số chia hết cho 3
a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
b) \(109.5^2-3^2.25\)
\(=109.25-9.25\)
\(=25\left(109-9\right)\)
\(=25.100\)
\(=2500\)
c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)
\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)
\(=\left(5^2.6-20.5\right):10-20\)
\(=\left(25.6-20.5\right):10-20\)
\(=\left(150-100\right):10-20\)
\(=50:10-20\)
\(=5-20\)
\(=-15\)
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
31 + 32 + ..... + 3100
Đặt A = 31 + 32 + .... + 3100
Số hạng của A là :
(100 - 1) : 1 + 1 = 100 ( số hạng )
Vì 100 \(⋮\) 2 , ta nhóm A như sau :
A = 31 + 32 + .... + 3100
A = (31 + 32) + (33 + 34) + .... + (399 + 3100)
A = 3(1 + 3) + 33(1 + 3) + .... + 399(1 + 3)
A = 3.4 + 33.4 + .... + 399.4
A = 4(3 + 33 + .... + 399)
Vì 4 \(⋮\) 4 \(\Rightarrow\) 4(3 + 33 + .... + 399) \(⋮\) 4
Hay A \(⋮\) 4
Vậy A chia hết cho 4.
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Ta có :
\(B=n^2+n+3=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp nên có chữ số tận cùng là \(0;2;6\)
Do đó \(n\left(n+1\right)+3\) có chữ số tận cùng là \(3;5;9\)
Vì nhưng số có chữ số tận cùng là \(3;5;9\) \(⋮̸\) \(2\)
\(\Rightarrow n\left(n+1\right)+3⋮̸\) \(2\)
\(\Rightarrow B=n^2+n+3\) \(⋮̸\) \(2\)
Vậy \(B=n^2+n+3⋮̸\) \(2\rightarrowđpcm\)
\(B=n^2+n+3\)
\(B=n\left(n+1\right)+3\)
Xét:
\(n\left(n+1\right)\)tích của 2 số tự nhiên liên tiếp,chia hết cho 2,số chẵn
\(3\)số lẻ
Số chẵn +số lẻ=số lẻ \(⋮̸\)2 (đpcm)
Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)
Khi chia \(a\) cho \(3\) ta có các trường hợp :
\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)
\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)
\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)
Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)
\(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )
Xét 3 trường hợp :
+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3
+ a = 3k + 1
=> a+2 = 3k + 1 + 2
= 3k + ( 1 + 2 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+2) \(⋮\) 3
+ a = 3k + 2
=> a+1 = 3k + 2 + 1
= 3k + ( 2 + 1 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+1) \(⋮\) 3
Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Gọi hai số tự nhiên liên tiếp đó là: a; a+1
Ta có: a chia hết cho 4
a + 1 chia hết cho 25
Vì a+1 chia hết cho 25 nên
Ư (a+1) = {1;5;25}
Vì số tự nhiên có hai chữ số (theo đề bài)
=> a+1 = 25
=> a = 25 -1 = 24 chia hết cho 4
Vậy hai số đó là 24;25 thỏa mãn đề bài