Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 3n+2/n-1 = 3n-3+5/n-1 = 3n-3/n-1 + 5/n-1 = 3 - 5/n-1
Vậy A là số nguyên khi 5 chia hết cho n-1 (nguyên trừ nguyên mới ra nguyên nhen)
=>n-1 thuộc Ư{5}={1;-1;5;-5}
=>n thuộc {2;0;6;-4}
Không chắc nhen
vì 3n +2/n-1 có giá trị là 1 số nguyên nên 3n+2 chia hết cho n-1. Ta có: 3n+2 chia hết cho n-1 3n-3+5 chia hết cho n-1 (3n-3)+5 chia hết cho n-1 3(n-1)+5 chia hết cho n-1 suy ra, 5 chia hết cho n-1(vì 3(n-1) chia hết cho n-1) suy ra, n-1 thuộc Ư(5)=(-1,-5,5,1) suy ra, n thuộc(0,-4,6,2) Vay n thuoc (0,-4,6,2)
Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)
\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)
\(\Leftrightarrow6n-9+11⋮2n-3\)
Ta thấy \(6n-9⋮2n-3\forall n\)
\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)
...
Để phân số n+5/n+2 là số nguyên
=> n + 5 chia hết cho n + 2
=> (n+2)+3 chia hết cho n+2
Ta có: n+2 chia hết cho n+2
Để (n+2)+3 chia hết cho n+2
=> 3 chia hết cho n+2
=> n+2 thuộc vào tập hợp các ước của 3 mà ước của 3 = {1;-1;3;-3}
Thay:
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n thuộc vào tập hợp 4 giá trị {-1;-3;1;-5}
Mình không biết nữa nhưng mình nghĩ là 1 vì:
\(\frac{1+5}{1+2}\)=\(\frac{6}{3}\)=2
Bg
Để phân số \(\frac{n^2+1}{n-2}\)có giá trị là một số nguyên thì n2 + 1 (tử số) chia hết cho n - 2 (mẫu số)
Ta có: n2 + 1 \(⋮\)n - 2 (n \(\inℤ\))
=> n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2
Vì n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2 với n(n - 2) \(⋮\)n - 2 và 2(n - 2) \(⋮\)n - 2
Nên 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư (3)
Ư (3) = {-1; -3; 1; 3}
=> n - 2 = -1 hay -3 hay 1 hay 3
n = -1 + 2 hay -3 + 2 hay 1 + 2 hay 3 + 2
n = 1 hay -1 hay 3 hay 5.
Vậy n \(\in\){1; -1; 3; 5}
Để 3n+2/n co giá trị là số nguyên
=> 3n+2 chia hết cho n
=>( 3n +2)-n chia hết cho n
=> (3n+2)-3n chia hết cho n
=> 3n+2 -3n chia hết cho n
=> 2 chia hết cho n
=> n thuộc ước của 2
Vậy n có thể bằng -1;-2;1;2
Để A nguyên thì 3n + 2 chia jeets cho n
=> 2 chia hết cho n
=> n thuộc Ư(2) = {-2;-1;1;2}
\(A=\frac{3n+2}{n}=3+\frac{2}{n}\)
A nguyên \(\Leftrightarrow3+\frac{2}{n}\)nguyên \(\Leftrightarrow\frac{2}{n}\)nguyên
\(\Leftrightarrow n\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\in Z\)
Vậy \(n\in\left\{\pm1;\pm2\right\}\)thì A nguyên
Trả lời:
ta cần tìm n để (3n+2) mod n =0
Ta thấy: 3n mod n =0
=> để A nguyên thì
2 mod n =0
=> n={-2,-1,1,2}