K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

ngủ như lợn

ma cung doi hoc

23 tháng 2 2017

ko biết vi mình mới học lớp 7

20 tháng 12 2017

A B C O F H E D I K A' C' B' M N

a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)

KB // CF \(\Rightarrow\widehat{ABK}=90^o\)

Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).

b) Do BHCK là hình bình hành nên I là trung điểm HK.

AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K

Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'

Tương tự : HF = FC' ; HE = EB'

Ta có :  \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)

\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)

\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)

\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)

Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)

c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)

Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\)  (1)

AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.

Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)

Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)

Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\)   (2)

Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)

20 tháng 12 2017

ghê quá cô ơi

4 tháng 10 2020

a)  A B C O D

Ta có: \(\frac{OD}{AD}=\frac{S_{BOC}}{S_{ABC}};\frac{OE}{BE}=\frac{S_{AOC}}{S_{ABC}};\frac{OF}{CF}=\frac{S_{AOB}}{S_{ABC}}\)\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{ABC}}{S_{ABC}}=1\left(ĐPCM\right)\)

b) chịu

4 tháng 10 2020

b) Gợi ý nhỏ: Min=64

25 tháng 11 2015

bọn tớ chưa học đến phần này

25 tháng 12 2018

a, Tam giá ABC nội tiếp đường tròn; BC đường kính của đường tròn=> tam giác ABC vuông tại A

Xét tam giác ABC có góc BAC= 90 độ

\(CA^2=CB^2-AB^2\)( PI TA GO)

\(CA^2=4R^2-R^2\)

\(CA=\sqrt{3}R\)

b, ta có AE=EB (t/c 2 tiếp tuyến cắt nhau)(1)

AF=CF (t/c 2 tiếp tuyến cắt nhau)(2)

ta có:

EF=EA+AE

(1)(2)=> EF= BE+CF

C, ta có góc FOC=FOA(3)

góc AOE=BOE(4)

cả hai đều là tính chất hai tiếp tuyến cắt nhau

ta có FOC+FOA+AOE+BOE= 180 độ

(3)(4)=> 2(FOA+AOE)=180 độ

=> FOA+AOE= 90 độ 

=> OE vuông góc với OF

theo (1) và (2) câu a ta có BE.CF=FA.AE

xét tam giác OFE vuông tại O

FA.AE=OA^2=R^2(5)

ta có \(\frac{CB^2}{4}=\frac{4R^2}{4}=R^2\)(6)

(5)(6)=> BE.CF=\(\frac{BC^2}{4}\)

mình chưa làm được câu cuối