Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
a) Ta có: tam giác ABC vuông tại A suy ra góc BAC=90 hay BAD=90
Có: DH vuông góc BC=>DHB= 90
Lại có: BD là đường phân giác của góc BAC=>góc ABD=góc HBD
Suy ra tam giác ABD= tam giác HBD (cạnh huyền-góc nhọn)
Suy ra BA=BH (điều phải chứng minh)
A B C H D
Giải:
a) Ta có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\) ( tổng 3 góc của \(\Delta=180^o\) )
\(\Rightarrow\widehat{BAC}+70^o+30^o=180^o\)
\(\Rightarrow\widehat{BAC}=80^o\)
b) Mà AD là tia phân giác của \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{1}{2}\widehat{A}=40^o\)
Ta có: \(\widehat{C}+\widehat{ADC}=\widehat{ADH}\) ( góc ngoài \(\Delta ADC\) )
\(\Rightarrow30^o+40^o=\widehat{ADH}\)
\(\Rightarrow\widehat{ADH}=70^o\)
c) Xét \(\Delta AHD\) có:
\(\widehat{HAD}+\widehat{AHD}+\widehat{ADH}=180^o\)
\(\Rightarrow\widehat{HAD}+90^o+70^o=180^o\)
\(\Rightarrow\widehat{HAD}=20^o\)
Vậy a) \(\widehat{BAC}=80^o\)
b) \(\widehat{ADH}=70^o\)
c) \(\widehat{HAD}=20^o\)
a,Ta có : BAC = A
Mà A =1800 _ B -C
=>A =1800 -700 -300
=>A =800
b, Ta có : A1 là tia phân giác của A
=>A1 = \(\frac{1}{2}\)A +400
Mà ADH là góc ngoài của đỉnh D của tam giác ADC nên
ADH = C+A1 =300+ 400 =700
c, Theo câu b, ta có :
ADH = 700 => HAD = 900 -700 =200
MỌI NGƯỜI GIẢI HỘ MÌNH VỚI. 0,3 x Y + Y = 6,5