K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

15 tháng 12 2017

Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )

=> 2n+3 và 3n+4 đều chia hết cho d

=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d

=> 6n+9 và 6n+8 đều chia hết cho d

=> 6n+9-(6n+8) chia hết cho d        hay 1 chia hết cho d 

=> d = 1 ( vì d thuộc N sao )

=> ƯCLN của 2n+3 và 3n+4 là 1

=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

k mk nha

15 tháng 12 2017

thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<

Bài này giống hệt đề thi cuối kỳ bọn mk,mk k bt làm nên đéo đc điểm