Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-2\right)^2=4^2\)
\(\Rightarrow\hept{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\x=-2\end{cases}}\)
Bài 1:
a) \(\left(x-2\right)^2=16\)
\(\Rightarrow\left(x-2\right)^2=4^2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=4+2=6\)
b) \(\left(2x-3\right)^2=9\)
\(\Rightarrow\left(2x-3\right)^2=3^2\)
\(\Rightarrow2x-3=3\)
\(\Rightarrow2x=3+3=6\)
\(\Rightarrow x=6:2=3\)
Bài 2 tương tự nhé em
P/s: Chỉ cần phân tích vế phải sao cho cùng số mũ với vế trái là được nhé!
Chúc em học tốt!
a) Ta có : \(16^{17}=\left(2^4\right)^{17}=2^{68}\)
\(8^{18}=\left(2^3\right)^{18}=2^{54}\)
Vì \(2^{68}>2^{54}\Rightarrow16^{17}>8^{18}\)
b) Ta có: \(3^{555}=\left(3^5\right)^{111}=243^{111}\)
\(5^{333}=\left(5^3\right)^{111}=125^{111}\)
Vì \(243^{111}>125^{111}\Rightarrow3^{555}>5^{333}\)
c) Ta có : \(2017^2=2017\cdot2017=2017\cdot2016+2017\)
\(2016\cdot2018=2016\cdot\left(2017+1\right)=2016\cdot2017+2016\)
Vì 2016 < 2017 nên 2016*2017 + 2017 > 2016*2017 + 2016
Vậy \(2017^2>2016\cdot2018\)
Lưu ý : dấu \(\left(\cdot\right)\)là dấu nhân nha bạn
2017^0-5*x=-49 =>1-5*x=-49 => 5*x = 49 + 1 => 5*x=50 => x=10
-17*53-21*(-17)-17 =(-17)*(53-21+1)=(-17)*23=391
Bài 1:
a) \(x^{10}=1^x\Rightarrow\orbr{\begin{cases}x=1\\x=10\end{cases}}\)
b) \(x^{10}=x\Rightarrow x=1\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5.\left(2x-15\right)^3=\left(2x-15\right)^3\)
\(\left(2x-15\right)^2=1\Rightarrow x=8\)
Bài 2:
\(a;2^{16}=2^{13}\cdot2^3=2^{13}\cdot8>7\cdot2^{13}\)
\(b;49^8\cdot27^5=7^{16}\cdot3^{15}=21^{15}\cdot7>21^5\)
C;Ta có:\(199^{20}< 200^{20}=2^{20}\cdot10^{40}=2^{15}\cdot10^{40}\cdot2^5\)
\(2003^{15}>2000^{15}=2^{15}\cdot10^{45}=2^{15}\cdot10^{40}\cdot10^5\)
Vì 25<105 nên 19920<200315
\(d;3^{39}< 3^{40}=9^{20}< 11^{20}< 11^{21}\)
Ta có:\(A=3+3^2+3^3+...+3^{17}\)
\(3A=3\cdot\left(3+3^2+3^3+...+3^{17}\right)\)
\(3A=3^2+3^3+3^4+...+3^{18}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{18}\right)-\left(3+3^2+3^3+...+3^{17}\right)\)
\(2A=3^{18}-3\)
\(A=\frac{3^{18}-3}{2}\)
Vì \(3^{18}-3>3^{18}-4\)
\(\Rightarrow\frac{3^{18}-3}{2}>\frac{3^{18}-4}{2}\)
\(\Rightarrow A>B\)
A = 31 + 2 + 3 + 4 + 5 + 6 ... + 17
A = 3153
B = [ 318 - 4 ]
Ta thấy rõ ràng A sẽ lớn hơn B vì 153 > 18 ( chưa kể phải trừ thêm 4 ở biểu thức B )
A > B
Phạm Nguyễn Tất Đạt đúng nhưng hơi dài dòng quá !!
\(a,[\left(8.x-12\right):4].3^3.3=3^6.6\)
\(\left(8x-12\right):4=54\)
\(8x-12=216\)
\(8x=228\)
\(x=28,5\)
\(b,41-2^{x+1}=9\)
\(2^{x+1}=41-9\)
\(2^{x+1}=32\)
\(2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
a) pt <=> \(\frac{x\left(x+1\right)}{2}=500500\)
<=> \(x^2+x=1001000\)
<=> \(x^2-1000x+1001x-1001000=0\)
<=> \(\left(x-1000\right)\left(x+1001\right)=0\)
<=> \(\orbr{\begin{cases}x=1000\\x=-1001\end{cases}}\)
Do \(x>0\)=> \(x=1000\)
b)
<=> \(2x=210\)
<=> \(x=105\)
c)
<=> \(6x-81=3.7\)
<=> \(x=17\)
d)
<=> \(125-5\left(3x-1\right)=5^2\)
<=> \(5\left(3x-1\right)=100\)
<=> \(3x-1=20\)
<=> \(x=7\)
e)
<=> \(4^{x+1}+1=65\)
<=> \(4^{x+1}=64\)
<=> \(x+1=3\)
<=> \(x=2\)
j)
<=> \(2\left(2x-3\right)=14\)
<=> \(2x-3=7\)
<=> \(x=5\)
a)
x= 43
b) 2X-12=8
2X =8+12
2X=20
X=20:2
x =10
c)45:(3X-17)=32
45 : (3X-17)=9
3X-17=45:9
3X-17=5
3X=5+17
3X=22
x=22:3
x= 7,33
d)(2X-8)x2=24
( 2X-8)x2 =16
2X-8 =16:2
2X-8 =8
2X =8+8
2X =16
x =16:2
X =8
Đúng thì tk nếu sai thì thôi
Làm ẩu ^^