Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}\)-\(\frac{-5}{9}\)-\(\frac{11}{36}\)=\(\frac{27}{36}\)-\(\frac{-20}{36}\)-\(\frac{11}{36}\)=1
\(\frac{1}{9}\)+\(\frac{-5}{3}\)-\(\frac{-13}{18}\)=\(\frac{2}{18}\)+\(\frac{-30}{18}\)-\(\frac{-13}{18}\)=\(\frac{-15}{18}\)=\(\frac{-5}{6}\)
\(\frac{3}{4}-\frac{-5}{9}-\frac{11}{36}=\frac{27}{36}-\frac{-20}{36}-\frac{11}{36}=\frac{47}{36}-\frac{11}{36}=\frac{36}{36}=1\)
\(\frac{1}{9}+\frac{-5}{3}-\frac{13}{18}=\frac{2}{18}+\frac{-30}{18}-\frac{13}{18}=\frac{-28}{18}+\frac{13}{18}=\frac{-15}{18}=\frac{-5}{6}\)
(1/2*X+2/1/4)*-2/3=2/5/6
(1/2*X+9/4)*-2/3=17/6
(1/2*X+9/4)=-17/4
1/2*X=-13/2
X=-13
B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)
a)
\(\frac{1}{x^2+x+1}dx=\frac{1}{\left(x-\frac{1}{4}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dx\)
Đặt
\(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant\) => dx=\(\frac{\sqrt{3}}{2}\left(1+tan^2t\right)dt\) =>\(\frac{1}{x^2+x+1}dx=\frac{1}{\frac{3}{4}\left(1+tan^2t\right)+\frac{3}{4}}\left(1+tan^2t\right)dt=\frac{3}{4}dt=\frac{3}{4}t+C\)
Với \(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant=>t=\left(\frac{2\sqrt{3}}{4x-1}\right)\)
Câu b nhá :
\(\frac{1}{x^2+2x+2}dx=\frac{1}{\left(x+1\right)^2+\left(\sqrt{2^2}\right)}dx\)
Đặt
\(x+1=\sqrt{2}tant=>dx=\sqrt{2}\left(1+tan^2t\right)dt\)
=> \(\frac{1}{x^2+2x+3}dx=\frac{1}{2\left(tan^2t+1\right)}.\left(1+tan^2t\right)dt=\frac{1}{2}dt=\frac{1}{2}t+C\)
Với
\(x+1=\sqrt{2}tant=>tant=\frac{x+1}{\sqrt{2}}<=>t=arctan\left(\frac{x+1}{\sqrt{2}}\right)\)
Mai oi