K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

a)\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

suy ra (đề bài)

b)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

6 tháng 3 2016

bn ơi chờ tí mình ăn cơm đã nhé

8 tháng 3 2016

a)\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1-1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)

b)\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{8}\)

\(\Rightarrow A=\frac{3}{8}\)

27 tháng 2 2016

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)};\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

\(Vậy\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A=1-\frac{1}{8}=\frac{7}{8}\)

27 tháng 2 2016

1a,Là điều hiển nhiên khỏi cần giải

b,=1-1/10

2,1/2-1/8

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

24 tháng 2 2018

mong các bạn giúp mình nhé

mình xin cảm ơn

30 tháng 3 2019

Biết câu b thôi, với lại k cần áp dụng câu a)

b. \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\) 

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\) 

\(=1-\frac{1}{10}\) 

\(=\frac{9}{10}\)

26 tháng 2 2018

a )  Ta có :   \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\) \(=\frac{1}{n.\left(n+1\right)}\)

b )   Áp dụng công thức trên tính tổng này như sau : 

             \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)

      \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

      \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

      \(=1-\frac{1}{10}\)

      \(=\frac{9}{10}\)

Chúc học giỏi !!!

26 tháng 2 2018

a, \(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}\)

\(=\frac{1}{n\left(n+1\right)}=VT\RightarrowĐPCM\)

4 tháng 5 2017

1) a) để A là số nguyên thì \(n\ne1\)

b) để  \(A=\frac{5}{n-1}\)là số nguyên thì n-1 là ước nguyên của 5

\(n-1=1\Rightarrow n=2\)

\(n-1=5\Rightarrow n=6\)

\(n-1=-1\Rightarrow n=0\)

\(n-1=-5\Rightarrow n=-4\)

kl : n\(\in\){ 2; 6; 0; -4 }

2) Gọi d là ước chung lớn nhất của n và n+1 

\(\Rightarrow n⋮d;n+1⋮d\)

\(\Rightarrow\left(n+1-n\right)⋮d\)

\(\Rightarrow1⋮d\)

Vì ước chung lớn nhất của n và n+1 là 1 nên n/n+1 là phân số tối giản

3)     Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có

\(\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

..............................

\(\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}< 1\)

\(\Rightarrow\)\(1-\frac{1}{50}< 1\)

\(\Rightarrow\)\(\frac{49}{50}< 1\Rightarrow dpcm\)

4)     \(S=\frac{2^{2009}-1}{1-2^{2009}}\)

Ai thấy đúng thì ủng hộ mink nha !!!