Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6
Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.
n(2n - 3) - 2n(n + 1) = 2n2 - 3n - 2n2 - 2n = -5n
Do: -5 chia hết cho 5 => -5n chia hết cho 5 với mọi n nguyên
Vậy n(2n - 3) - 2n(n + 1) chia hết cho 5 với mọi n nguyên
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
b: \(B=\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=2n\left(2n-1\right)\left(2n-2\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là 2 số liên tiếp
nên \(n\left(n-1\right)⋮2\)
\(\Leftrightarrow4n\left(n-1\right)⋮8\)
hay B chia hết cho 8
Chứng minh rằng (n thuộc Z)
a) n2(n + 1) + 2n(n + 1)
= (n + 1)(n2 + 2n)
= n(n + 1)(n + 2) \(⋮\) 6 (với mọi \(n\in Z\))
Vậy n2(n + 1) + 2n(n + 1) chia hết cho 6 (với mọi \(n\in Z\))
b) (2n - 1)3 - (2n - 1)
= (2n - 1)[(2n - 1)2 - 12]
= (2n - 1)(2n - 1 + 1)(2n - 1 - 1)
= 2n(2n - 1)(2n - 2)
= 4n(2n - 1)(n - 1) \(⋮4\left(1\right)\)
Mà (2n - 1)(n - 1) = (n + n - 1)(n - 1) \(⋮2\left(2\right)\)
Từ (1) và (2) suy ra: (2n - 1)3 - (2n - 1) chia hết cho 8 (với mọi \(n\in Z\))
n và n+1 là 2 số tự nhiên liên tiếp nên 1 số chia hết cho 2.
n;n+1;n+2.
1 trong 3 số chia hết cho 3 nếu n hay n+1 chia hết cho 3 thì bài toán coi như xong.
Nếu n+2 chia hết cho 3.
2n;2n+1;2n+2.
1 số chia hết cho 3.
n ko chia hết cho 3 theo giả thuyết nên 2 n ko chia hết cho 3.
n+1 cũng vậy suy ra 2n+2 ko chia hết cho 3.
Vậy 2n+1 chia hết cho 3.
Vậy biếu thức trên lun chia hết cho 6.
Chúc chị học tốt^^
+ Nếu n chia hết cho 3 => n(n + 1).(2n + 1) chia hết cho 3
+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 => n(n + 1)(2n + 1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 => n(n + 1)(2n + 1) chia hết cho 3
=> n(n + 1)(2n + 1) luôn chia hết cho 3 (1)
Mà n.(n + 1) là tích 2 số tự nhiên liên tiếp => n(n + 1) chia hết cho 2 => n(n + 1)(2n + 1) chia hết cho 2 (2)
Từ (1) và (2), do (2;3)=1 => n(n + 1)(2n + 1) chia hết cho 6 (đpcm)