K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

1 . Ta có :

AP // BC ( gt )

góc PAC và góc BCA ở vị trí so le trong

Suy ra : góc PAC = góc BCA

Xét tam giác PNA và tam giác MNC , ta có :

góc ANP = góc MNC ( đối đỉnh )

AN = NC ( N là trung điểm AC )

góc PAN = góc NCM ( cmt )

Do đó : tam giác PNA = tam giác MNC

b . Xét tứ giác AMPC , ta có :

AP // MC ( AP // BC )

AP = MC ( tam giác PNA = tam giác MNC )

Suy ra : tứ giác AMPC là hình bình hành 

=> PC = AM

30 tháng 8 2021

1/

Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)

BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)

2/ Ta có

\(MN\perp BC;CP\perp BC\) => MN//CP

MN=CP

=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)

3/

Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh 

=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

30 tháng 8 2021

bạn ơi giúp mình nốt bài 3 này nha mình cảm ơn nhiềuundefined

5 tháng 11 2021

em ko bt,em mới lớp 6

5 tháng 11 2021

ko biế thì nhắn vào đây làm chi