K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

15 tháng 5 2021

85axfHu.png

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0

a: góc FHB=góc FCB=90 độ

=>FCHB nội tiếp

b: Xét ΔHAF vuông tại H và ΔHEB vuông tại H có

góc HFA=góc HBE

=>ΔHAF đồng dạng với ΔHEB

=>HA/HE=HF/HB

=>HA*HB=HE*HF

21 tháng 3 2015

câu c hình như bn nhầm đỉnh tứ giác thì phải

d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé

17 tháng 5 2016

kho qua

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp