Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 ) 3x^2 - 11x + 6 = 3x^2 - 9x - 2x + 6 = 3x( x- 3 ) - 2( x - 3) = ( 3x - 2 )( x - 3 )
2) 8x^2 - 2x - 1 = 8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
3; 8x^2 - 2x - 1 =8x^2 - 4x + 2x - 1 = 4x( 2x - 1 ) + 2x - 1 = ( 4x + 1 )( 2x - 1 )
4; x^4 - 3x^2 - 4 = x^4 - 4x^2 + x^2 - 4 = x^2 ( x ^2 - 4 ) + x^2 - 4 = ( x^2 + 1 )( x^2 - 4 ) = ( x^2 + 1 )( x - 2 )( x + 2)
5) = x^2 ( x + 2 ) - 3 ( x+ 2 ) = ( x^2 - 3 )( x + 2 )
Nhiều quá
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
P(x) = (ax4 - 4x4) - 6x3 + 3x2 - 2x + 7 = x4(a - 4) - 6x3 + 3x2 - 2x + 7
Đa thức P(x) có bậc bằng 3 => a - 4 = 0 <=> a = 4
mình nhanh nhất nè , tích đi
b) Để g(x) có nghiệm
\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)
c) Để k(x) có nghiệm
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2+x-4x-4=0\)
\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)
Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức
Ta có : f(x) - g(x) = (3x2 - x + 1) - (2x2 - 3x - 7)
=> f(x) - g(x) = 3x2 - x + 1 - 2x2 + 3x + 7
=> f(x) - g(x) = x2 + 2x + 1 + 7
=> f(x) - g(x) = (x + 1)2 + 7
Mà ; (x + 1)2 \(\ge0\forall x\)
Nên : f(x) - g(x) = (x + 1)2 + 7 \(\ge7\forall x\)
Suy ra : f(x) - g(x) = (x + 1)2 + 7 \(>0\forall x\)
Vậy đa thức f(x) - g(x) vô nhiệm
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
nghiệm của đa thức \(2x^2+3x+1\)là giá trị x thỏa mãn
\(2x^2+3x+1=0\)
\(\Rightarrow\)\(2x^2+2x+x+1=0\)
\(\Rightarrow\)\(\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Rightarrow\)\(2x.\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\)\(\left(x+1\right).\left(2x+1\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=-1\\x=-\frac{1}{2}\end{cases}}\)
vậy nghiệm của đa thức trên là \(-1,-\frac{1}{2}\)