K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

a) \(2x^2-16x=0\)

\(\Rightarrow2x\left(x-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

b) \(\left(2x-1\right)^2-25=0\)

\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Rightarrow4\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

9 tháng 10 2021

\(b.\left(2x-1\right)^2-25=0\)

<=>\(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

<=>\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

\(a.2x^2-16x=0< =>2x\left(x-8\right)=0\)

\(< =>\left[{}\begin{matrix}2x=0\\x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

5 tháng 10 2019

Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))

21 tháng 2 2019

k cho mk nha

x^4-2x^3+3x^2-2x+1

=(x^4-2x^3+x^2)+(x^2-2x+1)

=x^2(x^2-2x+1)+(x^2-2x+1)

=(x^2+1)(x^2-2x+1)

=(x^2+1)(x-1)^2

21 tháng 2 2019

chết quên

mk mới phân tích thôi còn lại bạn lm nhé

21 tháng 10 2021

a)

(x+4)(3x-5) = 0

=> x + 4 = 0 hoặc 3x-5 = 0

     x = -4                 x = 5/3

b)

  2x2 + 7x + 3 = 0

  2x2 + 6x + x + 3= 0

  (2x+1)(x+3) = 0

=> 2x+1 = 0 hoặc x + 3 = 0

    x = -1/2              x = -3

16 tháng 12 2018

\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)

\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)

Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:

\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.

Vậy : x = 0

16 tháng 12 2018

\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)

\(2x^2-x+4x-2+1=4x^2\)

\(\Rightarrow2x^2-3x+1=0\)

\(2x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

ý còn lại tham khảo bài tth

Ta có : x+ x2 + 2x - 16 \(\ge0\)

<=> \(x^3-2x^2+3x^2-6x+8x-16\ge0\)

<=> \(x^2\left(x-2\right)+3x\left(x-2\right)+8\left(x-2\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Vì \(x^2+3x+8>0\forall x\)

Nên : \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

24 tháng 5 2018

Cám ơn At the speed of light!

14 tháng 7 2019

a) \(4x^2-4x+1=\left(2x-1\right)^2\)

14 tháng 7 2019

\(3x\left(x-5\right)-x\left(4+3x\right)=43\)

\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)

\(\Leftrightarrow-19x=43\)

\(\Leftrightarrow x=\frac{-43}{19}\)

6 tháng 7 2019

a) 16(4x+5)2 - 25(2x+2)2

\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)

\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)

\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)

\(=\left(26x+30\right)\left(6x+10\right)\)

6 tháng 7 2019

\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)

\(c,\left(x+1\right)^4-\left(x-1\right)^4\)

\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)

\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)

\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)

\(=\left(2x^2+2\right)2x.2\)

\(=4x.2\left(x^2+1\right)\)

\(=8x\left(x^2+1\right)\)

8 tháng 7 2019

1.

a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

b)\(9a^2+3ab+\frac{1}{4}a^2\)

2.

a)\(\left(5x+2b\right)^2\)

b)\(\left(x+1\right)^2\)

c)\(\left(3x+1\right)^2\)

d)\(\left[\left(2x+3y\right)+1\right]^2\)