K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a. Để x là số nguyên 

Thì -3 chia hết cho 2a +1

==> -3 chia hết cho 2a —3 +4

Vì -3 chia hết cho -3

Nên -3 chia hết cho 2a+4

2a+4 € Ư(3)

2a+4€{1;-1;2;-3}

Th1: 2a+4=1

2a=1–4

2a=-3

a=-3:2

a=-3/2

Th2: 2a+4=-1

2a=-1-4

2a=-5

a=-5:2

a=-5/2

Th3: 2a+4=3

2a=3-4

2a=-1

a=-1:2

a=-1/2

TH4: 2a+4=-3

2a=-3-4

2a=-7

a=-7:2

a=-7/2

Mình biết 1 câu thôi

27 tháng 6 2018

Để M là số nguyên

Thì (x2–5) chia hết cho (x2–2)

==>(x2–2–3) chia hết cho (x2–2)

==>[(x2–2)—3] chia hết cho (x2–2)

Vì (x2–2) chia hết cho (x2–2)

Nên 3 chia hết cho (x2–2)

==> (x2–2)€ Ư(3)

==> (x2–2) €{1;-1;3;-3}

TH1: x2–2=1

x2=1+2

x2=3

==> ko tìm được giá trị của x

TH2: x2–2=-1

x2=-1+2

x2=1

12=1

==>x=1

TH3: x2–2=3

x2=3+2

x2=5

==> không tìm được giá trị của x

TH4: x2–2=-3

x2=-3+2

x2=-1

(-1)2=1

==> x=-1

Vậy x € {1;—1)

NM
11 tháng 9 2021

ta có x nguyên khi a-5 là bội của 7

hay \(a-5=7k\text{ với k là số nguyên hay }a=7k+5\)

để \(\frac{1}{x}=\frac{7}{5-a}\text{ là số nguyên thì }5-a\text{ là ước của }7\text{ hay}\)

\(5-a\in\left\{\pm7,\pm1\right\}\Rightarrow a\in\left\{12,6,4,-2\right\}\)

12 tháng 9 2021

Thầy( cô) Nguyễn Minh Quang ơi, em ko hiểu ở chỗ '' Để \(\frac{1}{x}=\frac{7}{5-a}\)thì 5-a là ước của 7''

13 tháng 1 2019

a)  \(M=\left|x-3\right|+\left|x-5\right|=\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\)

Dấu "=" xra   <=>   \(\left(x-3\right)\left(5-x\right)\ge0\)

                     <=>     \(3\le x\le5\)

Vậy....

8 tháng 9 2016

125478

8 tháng 9 2016

125478

18 tháng 10 2018

Bài 1:

Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương

=> \(a-5\ge0\Rightarrow a\ge5\)

\(10-a\ge0\Rightarrow a\ge10\)

KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương

18 tháng 10 2018

Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên  ( bài 2 bn thiếu điều kiện thì phải

a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để x nguyên

=> 1/n-1 nguyên

=> 1 chia hết cho n-1

=> n - 1 thuộc Ư(1)={1;-1}

nếu n - 1 = 1 => n = 2 (TM)

n-1 = -1  => n = 0 (TM)

KL:...

b) Để y nguyên

\(\Rightarrow\frac{n-1}{2n-1}\) nguyên

=> n - 1 chia hết cho 2n - 1

=> 2n - 2 chia hết cho 2n - 1

2n - 1 - 1 chia hết cho 2n - 1

mà 2n-1 chia hết cho 2n - 1 

=> 1 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(1)={1;-1}

nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)

2n - 1 = - 1 => 2n = 0 => n = 0 (TM)

KL:..

5 tháng 9 2020

a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)

Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)

=> \(-5⋮x-5\)

=> x - 5 \(\in\)Ư(-5)

=> \(x-5\in\left\{1;5;-1;-5\right\}\)

=> \(x\in\left\{6;11;4;0\right\}\)

Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ 

b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)

Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)

=> \(13⋮x-5\)

=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)

=> \(x\in\left\{6;18;4;-8\right\}\)

Vậy khi  \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ

c) Ta có C = \(\frac{x-3}{2x}\)

=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)

Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)

Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì  C là số hữu tỉ