Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ A là:
2x-3y+12=0 và 2x+3y=0
=>x=-3 và y=2
Tọa độ M, M là trung điểm của BC là M(x;-3x/2)
Phương trình BC sẽ là: 3x+2y+c=0
Thay x=4 và y=-1 vào BC, ta được:
3*4+2*(-1)+c=0
=>c+12-2=0
=>c=-10
=>BC: 3x+2y-10=0
=>B(x;5-1,5x); y=5-1,5x
B(x;5-1,5x); C(4;-1); M(x;-3x/2)
Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2
=>2x=x+4 và -3x=5x-1
=>x=4 và -8x=-1(loại)
=>Không có điểm B nào thỏa mãn
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)
Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)
\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0
Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt
Phương trình BC:
\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)
\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt
Phương trình AC:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)
M thuôc trung tuyến \(d_2\) qua A nên:
\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)
\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)
Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)
Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt
Phương trình BC:
\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)
C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)
Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)
Do A thuộc -4x+3y+2=0 nên:
\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt
Phương trình AB:
\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)
\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt
Phương trình AC:
\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)
b.
Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)
Gọi H là chân đường cao hạ từ C xuống AB
\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến
AB đi qua A (1; -1) nên nó có phương trình là
x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0
Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng
M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)
⇒ AM ⊥ Δ
⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)
⇒ t + 1 + 2. (2t + 2) = 0
⇒ t = -1
Vậy M (- 1; - 1)
M là trung điểm của AB => Tọa độ B
Làm tương tự như thế sẽ suy ra tọa độ C
Gọi phương trình đường thẳng các cạnh AB, BC, CA của tam giác ABC lần lượt là (da), (db), (dc). Giả sử A(xA; yA), B(xB; yB)
Ta có: \(\left(d_1\right)2x-3y+12=0\Rightarrow\left(d_1\right)y=\frac{2}{3}x+4\)
\(\left(d_2\right)2x+3y=0\Rightarrow\left(d_2\right)y=-\frac{2}{3}x\)
*Vì đường cao và đường trung tuyến đều kẻ từ A nên A là giao điểm của (d1) và (d2)
Phương trình hoành độ giao điểm của (d1) và (d2) là: \(\frac{2}{3}x+4=-\frac{2}{3}x\)
\(\Leftrightarrow\) xA = x = -3
\(\Rightarrow y_A=-\frac{2}{3}.\left(-3\right)=2\Rightarrow A\left(-3;2\right)\)
Phương trình đường thẳng CA (dc) thỏa mãn hệ phương trình
\(\left\{{}\begin{matrix}4a+b=-1\\-3a+b=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{3}{7}\\b=\frac{5}{7}\end{matrix}\right.\)\(\Rightarrow\left(d_c\right)y=-\frac{3}{7}x+\frac{5}{7}\)(1)
* Ta có: (d1)⊥(db)
\(\Rightarrow a.a_b=-1\) \(\Rightarrow a_b=-\frac{3}{2}\) \(\Rightarrow\left(d_b\right)y=-\frac{3}{2}x+b\)
Mà C(4;-1) ∈ (db) \(\Rightarrow-1=-\frac{3}{2}.4+b\)\(\Leftrightarrow b=5\Rightarrow\left(d_b\right)y=-\frac{3}{2}x+5\) (2)
* Giả sử AM là đường trung tuyến ứng với cạnh BC hay M là giao điểm của (d2) và (db)
Phương trình hoành độ giao điểm của (d2) và (db) là\(-\frac{2}{3}x=-\frac{3}{2}x+5\Leftrightarrow x_M=x=6\)\(\Rightarrow y_M=-\frac{2}{3}.6=-4\Rightarrow M\left(6;-4\right)\)
Ta có: \(CM=\sqrt{\left(6-4\right)^2+\left(-4+1\right)^2}=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\left(đvd\right)\)Mà MB = CM\(\Rightarrow\sqrt{\left(x_B-6\right)^2+\left(y_B+4\right)^2}=\sqrt{13}\left(\circledast\right)\)
Điều kiện: B≠C\(\Rightarrow\left\{{}\begin{matrix}x_B\ne4\\y_B\ne-1\end{matrix}\right.\)
\(\circledast\Leftrightarrow x^2-12x+36+y^2+8y+16=13\left(x_B=x;y_B=y\right)\)
\(\Leftrightarrow x^2-12x+y\left(y+8\right)+39=0\)
Vì B ∈ (db) nên \(y=y_B=-\frac{3}{2}+5\). Phương trình đã cho trở thành:
\(x^2-12x+\left(-\frac{3}{2}x+5\right)\left(-\frac{3}{2}x+13\right)+39=0\)
\(\Leftrightarrow x^2-12x+\frac{9}{4}^2-\frac{39}{2}x-\frac{15}{2}x+65+39=0\)
\(\Leftrightarrow\frac{13}{4}x^2-39x+104=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_B=x=8\left(nhận\right)\\x_B=x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y_B=-\frac{3}{2}.8+5=-7\Rightarrow B\left(8;-7\right)\)
Phương trình đường thẳng AB thỏa mãn hệ phương trình:
\(\left\{{}\begin{matrix}-3a+b=2\\8a+b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{9}{11}\\b=-\frac{5}{11}\end{matrix}\right.\)\(\Rightarrow\left(d_a\right)y=-\frac{9}{11}-\frac{5}{11}\left(3\right)\)
T