Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui làm đại nghen không biết đúng không nữa.
Dùng hằng đẳng thức:
\(a^3+1=\left(a+1\right)\left(a^2-a+1\right)=\left(a+1\right)\left[\left(a-0,5\right)^2+0,75\right]\)
\(a^3-1=\left(a-1\right)\left(a^2+a+1\right)=\left(a-1\right)\left[\left(a+0,5\right)^2+0,75\right]\)
Ta có: \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
\(=\frac{\left(2^3+1\right)\left(3^3+1\right)\left(4^3+1\right)...\left(10^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)\left(4^3-1\right)...\left(10^3-1\right)}\)
Đặt \(P=\left(2^3+1\right)\left(3^3+1\right)\left(4^3+1\right)...\left(10^3+1\right)\)
<=> P = (2+1)[(2-0,5)2 + 0,75] . (3+1)[(3-0,5)2 + 0,75] . (4+1)[(4-0,5)2 + 0,75] ... (10+1)[(10-0,5)2 + 0,75]
= 3.(1,52 + 0,75) . 4(2,52 + 0,75) . 5(3,52 + 0,75)... 11(9,52 + 0,75)
Đặt \(Q=\left(2^3-1\right)\left(3^3-1\right)\left(4^3-1\right)...\left(10^3-1\right)\)
<=> Q = (2-1)[(2+0,5)2 + 0,75] . (3-1)[(3+0,5)2 + 0,75] . (4-1)[(4+0,5)2 + 0,75] ... (10-1)[(10+0,5)2 + 0,75]
= (2,52 + 0,75) . 2(3,52 + 0,75) . 3(4,52 + 0,75)... 9(10,52 + 0,75)
=> \(A=\frac{P}{Q}\)\(=\frac{\text{3.(1,5^2 + 0,75) . 4(2,5^2 + 0,75) . 5(3,5^2 + 0,75)... 11(9,5^2 + 0,75)}}{\left(2,5^2+0,75\right).2\left(3,5^2+0,75\right).3\left(4,5^2+0,75\right)...9\left(10,5^2+0,75\right)}\)
\(=\frac{3.4.5...11}{1.2.3...9}.\frac{\left(1,5^2+0,75\right)\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)...\left(9,5^2+0,75\right)}{\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)\left(4,5^2+0,75\right)...\left(10,5^2+0,75\right)}\)
\(=\frac{10.11.\left(1,5^2+0,75\right)}{2.\left(10,5^2+0,75\right)}=\frac{55}{37}\)
Vậy: \(A=\frac{55}{37}\)
K NHA!!
Tong quat: a^3+1=(a+1)[a^2-a+1]=(a+1)[(a-0,5)^2+0,75]
a^3-1=(a-1)[a^2+a+1]=(a-1)[(a+0,5)^2+0,75]
Tu so cua A=(2+1).[(2-0,5)^2+0,75].(3+1).[(3-0,5)^2+0,75].(4+1).[(4-0,75)^2+0,75]....(10+1).[(10-0,5)^2+0,75]
=3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]
Mau so cua A= (2-1).[(2+0,5)^2+0,75].(3-1).[(3+0,5)^2+0,75].(4-1).[(4+0,75)^2+0,75]....(10-1).[(10+0,5)^2+0,75]
=[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]
Vay A=3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]/[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]
=(3.4.5...11/1.2.3...9).[(1,5^2+0,75)(2,5^2+0,75)(3,5^2+0,75)...(9,5^2+0,75)/(2,5^2+0,75)(3,5^2+0,75)(4,5^2+0,75)...(10,5^2+0,75)]
=11.10.(1,5^2+0,75)/2.(10,5^2+0,75)
Con bao nhieu ban tu tinh tiep nha
Tai vi may minh bi lag nen khong danh phan so duoc vi vay minh phai tach mau, tu ra. sorry
bài 1) Đặt \(B=\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\)
Ta có: \(A=B.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}\)
\(B.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}=\frac{m-n}{p}.\frac{p}{m-n}+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}\)
\(=1+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left[\frac{\left(n-p\right).n}{mn}+\frac{\left(p-m\right).m}{mn}\right]=1+\frac{p}{m-n}.\frac{n^2-np+pm-m^2}{mn}\)
\(=1+\frac{p}{m-n}.\frac{\left(m-n\right).\left(p-m-n\right)}{mn}=1+\frac{p.\left(m-n\right).\left(p-m-n\right)}{\left(m-n\right).mn}=1+\frac{p.\left(p-m-n\right)}{mn}\)
\(=1+\frac{p^2-pm-pn}{mn}=1+\frac{p^2-p.\left(m+n\right)}{mn}\)
Vì m+n+p=0=>m+n=-p
\(=>B.\frac{p}{m-n}=1+\frac{p^2-p.\left(-p\right)}{mn}=1+\frac{2p^2}{mn}=1+\frac{2p^3}{mnp}\left(1\right)\)
\(B.\frac{m}{n-p}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{m}{n-p}=\frac{m-n}{p}.\frac{m}{n-p}+\frac{n-p}{m}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}\)
\(=1+\frac{m-n}{p}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}=1+\frac{m}{n-p}.\left(\frac{m-n}{p}+\frac{p-m}{n}\right)\)
\(=1+\frac{m}{n-p}.\left[\frac{\left(m-n\right).n}{np}+\frac{\left(p-m\right).p}{np}\right]=1+\frac{m}{n-p}.\frac{mn-n^2+p^2-mp}{np}\)
\(=1+\frac{m}{n-p}.\frac{\left(n-p\right).\left(m-n-p\right)}{np}=1+\frac{m.\left(n-p\right).\left(m-n-p\right)}{\left(n-p\right).np}=1+\frac{m.\left(m-n-p\right)}{np}\)
\(=1+\frac{m^2-mn-mp}{np}=1+\frac{m^2-m\left(n+p\right)}{np}=1+\frac{m^2-m.\left(-m\right)}{np}=1+\frac{2m^2}{np}=1+\frac{2m^3}{mnp}\left(2\right)\) (vì m+n+p=0=>n+p=-m)
\(B.\frac{n}{p-m}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{n}{p-m}=\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}+\frac{p-m}{n}.\frac{n}{p-m}\)
\(=1+\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}=1+\frac{n}{p-m}.\left(\frac{m-n}{p}+\frac{n-p}{m}\right)\)
\(=1+\frac{n}{p-m}.\left[\frac{\left(m-n\right).m}{pm}+\frac{\left(n-p\right).p}{pm}\right]=1+\frac{n}{p-m}.\frac{m^2-mn+np-p^2}{pm}\)
\(=1+\frac{n}{p-m}.\frac{\left(p-m\right).\left(n-p-m\right)}{pm}=1+\frac{n.\left(p-m\right).\left(n-p-m\right)}{\left(p-m\right).pm}=1+\frac{n.\left(n-p-m\right)}{pm}\)
\(=1+\frac{n^2-np-mn}{pm}=1+\frac{n^2-n\left(p+m\right)}{pm}=1+\frac{n^2-n.\left(-n\right)}{pm}=1+\frac{2n^2}{pm}=1+\frac{2n^3}{mnp}\left(3\right)\) (vì m+n+p=0=>p+m=-n)
Từ (1),(2),(3) suy ra :
\(A=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}=\left(1+\frac{2p^3}{mnp}\right)+\left(1+\frac{2m^3}{mnp}\right)+\left(1+\frac{2n^3}{mnp}\right)\)
\(=3+\frac{2p^3}{mnp}+\frac{2m^3}{mnp}+\frac{2n^3}{mnp}=3+\frac{2.\left(m^3+n^3+p^3\right)}{mnp}\)
*Tới đây để tính được m3+n3+p3,ta cần CM được bài toán phụ sau:
Đề: Cho m+n+p=0.CMR: \(m^3+n^3+p^3=3mnp\)
Từ m+n+p=0=>m+n=-p
Ta có: \(m^3+n^3+p^3=\left(m+n\right)^3-3m^2n-3mn^2+p^3=-p^3-3mn\left(m+n\right)+p^3\)
\(=-3mn\left(m+n\right)=-3mn.\left(-p\right)=3mnp\)
Vậy ta đã CM được bài toán phụ
*Trở lại bài toán chính: \(A=3+\frac{2.3mnp}{mnp}=3+\frac{6mnp}{mnp}=3+6=9\)
Vậy A=9
bài 2)
a)Nhận thấy các thừa số của A đều có dạng tổng quát sau:
\(n^3+1=n^3+1^3=\left(n+1\right)\left(n^2-n+1\right)=\left(n+1\right).\left(n^2-n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n+1\right).\left(n^2-2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n+1\right).\left[\left(n-\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]\)
\(n^3-1=n^3-1^3=\left(n-1\right)\left(n^2+n+1\right)=\left(n-1\right).\left(n^2+n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n-1\right).\left(n^2+2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n-1\right).\left[\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]\)
suy ra \(\frac{n^3+1}{n^3-1}=\frac{\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]}{\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]}\)
Do đó: \(\frac{2^3+1}{2^3-1}=\frac{\left(2+1\right).\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right).\left[\left(2+0,5\right)^2+0,75\right]}=\frac{3.\left(1,5^2+0,75\right)}{1.\left(2,5^2+0,75\right)}\)
\(\frac{3^3+1}{3^3-1}=\frac{\left(3+1\right).\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right).\left[\left(3+0,5\right)^2+0,75\right]}=\frac{4.\left(2,5^2+0,75\right)}{2.\left(3,5^2+0,75\right)}\)
...........................
\(\frac{10^3+1}{10^3-1}=\frac{\left(10+1\right).\left[\left(10-0,5\right)^2+0,75\right]}{\left(10-1\right).\left[\left(10+0,5\right)^2+0,75\right]}=\frac{11.\left(9,5^2+0,75\right)}{9.\left(10,5^2+0,75\right)}\)
\(=>A=\frac{3\left(1,5^2+0,75\right).4\left(2,5^2+0,75\right)........11.\left(9,5^2+0,75\right)}{1\left(2,5^2+0,75\right).2.\left(3,5^2+0,75\right)........9\left(10,5^2+0,75\right)}=\frac{3.4........11}{1.2......9}.\frac{1,5^2+0,75}{10,5^2+0,75}\)
\(=\frac{10.11}{2}.\frac{1}{37}=\frac{2036}{37}\)
Vậy A=2036/37
b) có thể ở chỗ 1+1/4 bn nhầm,phải là \(1^4+\frac{1}{4}\) ,mà chắc cũng chẳng sao,vì 14=1 mà
Nhận thấy các thừa số của B có dạng tổng quát:
\(n^4+\frac{1}{4}=n^4+n^2+\frac{1}{4}-n^2=\left(n^2\right)^2+2.n^2.\frac{1}{2}+\frac{1}{4}-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2+\frac{1}{2}-n\right)\left(n^2+\frac{1}{2}+n\right)\)
\(B=\frac{\left(1^2+\frac{1}{2}-1\right).\left(1^2+\frac{1}{2}+1\right).\left(3^2+\frac{1}{2}+3\right).\left(3^2+\frac{1}{2}-3\right)..........\left(9^2+\frac{1}{2}-9\right).\left(9^2+\frac{1}{2}+9\right)}{\left(2^2+\frac{1}{2}-2\right).\left(2^2+\frac{1}{2}+2\right).\left(4^2+\frac{1}{2}-4\right).\left(4^2+\frac{1}{2}+4\right)......\left(10^2+\frac{1}{2}-10\right).\left(10^2+\frac{1}{2}+10\right)}\)
Mặt khác,ta cũng có: \(\left(a+1\right)^2-\left(a+1\right)+\frac{1}{2}=a^2+2a+1-a-1+\frac{1}{2}=a^2+a+\frac{1}{2}\)
Suy ra \(B=\frac{1^2+\frac{1}{2}-1}{10^2+\frac{1}{2}+10}=\frac{1}{221}\)
Vậy B=1/221
a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)