Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐKXĐ: $3\geq x\geq -2$
PT \(\sqrt{x+2}-2-(\sqrt{3-x}-1)=x^2-6x+8\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x+2}+2}-\frac{2-x}{\sqrt{3-x}+1}=(x-2)(x-4)\) (liên hợp)
\(\Leftrightarrow (x-2)\left[\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right]=0\)
Ta thấy với mọi $3\geq x\geq -2$ thì:
\(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}>0\)
\(-x+4>0\)
\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)
\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\neq 0\)
Do đó $x-2=0$ hay PT có nghiệm duy nhất $x=2$ (t/m)
Em thử thôi nha! Ko chắc...
2)Nhận xét x = 1 là một nghiệm. Xét x khác 1, khi đó
ĐK: \(x>1\)
PT \(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt{x-1}=\left(\sqrt{x+8}-3\right)-\left(\sqrt{x+3}-2\right)\) (bớt 1 ở mỗi vế)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\frac{x-1}{\sqrt{x-1}}=\frac{x-1}{\sqrt{x+8}+3}-\frac{x-1}{\sqrt{x+3}+2}\)
\(\Leftrightarrow\left(x-1\right)\left[\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)\right]=0\)
Vì x > 1 nên x - 1 khác 0 suy ra \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)=0\) (1)
Dễ thấy vế trái của pt (1) < 0 với mọi x > 1 (em ko biết lí luận thế nào nữa...)
Do đó với x > 1 thì pt vô nghiệm.
Vậy pt có nghiệm duy nhất x = 1
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
\(A=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\left(\frac{4\sqrt{a}}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4a\left(a+1\right)}{a-1}\)
....... Tới đây được chưa bạn?