Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mới lớp 8, chịu
Mà hình như trong pt phân số thứ 2 thiếu bình phương thì phải
a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0
⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)
⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0
b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2
Bài 2:
a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)
=>x^2-3x+2=0
=>x=2 hoặc x=1
b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)
Để phương trình có nghiệm thì \(\text{Δ}>=0\)
=>1-4m>=0
=>m<=1/4
Để phương trình vô nghiệm thì Δ<0
=>m>1/4
c: TH1: m=1
=>-2x+2=0
=>x=1
TH2: m<>1
\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)
\(=4+8m\left(m-1\right)\)
\(=8m^2-8m+4\)
Để phương trình có nghiệm thì Δ>=0
=>\(m\in R\)
1/ \(\left(x-1\right)\left(x^2-2x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)
+ Từ (1) => x = 1
+ Từ (2) . Ta có: \(\Delta=\left(-2\right)^2-4\left(-2\right)=12\Rightarrow\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2+2\sqrt{3}}{2}=1+\sqrt{3}\\x=\frac{2-2\sqrt{3}}{2}=1-\sqrt{3}\end{cases}}\)
Vậy \(x=\left\{1+\sqrt{3};1-\sqrt{3};1\right\}\)
2/ \(\left(x-1\right)^2\left(2x^2-x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
+ Từ (1) => x = 1
+ Từ (2). Ta có: \(2x^2-x+2=2\left(x^2-\frac{1}{2}x+1\right)\)
\(=2\left(x^2-2.\frac{1}{4}x+\frac{1}{16}-\frac{1}{16}+1\right)\)
\(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\)
=> pt (2) vô nghiệm
Vậy x = 1
a)(x-1)(x2-2x-2)=0
=>x-1=0 hoặc x2-2x-2=0
- Với x-1=0 =>x=1
- Với x2-2x-2=0 =>denta=(-2)2-(-4(1.2))=12
=>x1,2=(2±căn 12)/2=1- căn 3 hoặc căn 3+1
b)(x-1)2(2x2-x+2)=0
=>(x-1)2=0 hoặc 2x2-x+2=0
- Với (x-1)2=0 =>x=1
- Với 2x2-x+2=0 =>denta=(-1)2-4(2*2)=-15
Với Denta<0 =>vô nghiệm
Vậy x=1
b: \(\Leftrightarrow\left(x^2-2x+1-1\right)^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-1\right]^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2+1-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-3\right)\left(x+1\right)=0\)
hay \(x\in\left\{1;3;-1\right\}\)
a: \(\Leftrightarrow2x^3-3x-10=-2\left(8-12x+6x^2-x^3\right)\)
\(\Leftrightarrow2x^3-3x-10=-16+24x-12x^2+2x^3\)
\(\Leftrightarrow-3x-10+16-24x+12x^2=0\)
=>\(12x^2-27x+6=0\)
hay \(x\in\left\{2;\dfrac{1}{4}\right\}\)
\(x^4+\left(x-1\right)\left(x^2-2x+2\right)=0\)
\(\Leftrightarrow x^4+x^3-3x^2+4x-2=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+2x\left(x^2-x+1\right)-2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+2x-2\right)=0\)
đến đây tự giải nhé