Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)
=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi
=>x=pi/8+kpi hoặc x=-pi/8+kpi
b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)
=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi
=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi
=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi
d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)
=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi
=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi
=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2
e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)
=>x-pi/3=kpi
=>x=kpi+pi/3
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
a.
\(\Leftrightarrow\left[{}\begin{matrix}3x=90^0-x+k360^0\\3x=90^0+x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{45^0}{2}+k90^0\\x=45^0+k180^0\end{matrix}\right.\)
b.
\(\Leftrightarrow cos\left(3x+45^0\right)=cos\left(x-180^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=x-180^0+k360^0\\3x+45^0=180^0-x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{225^0}{2}+k180^0\\x=\frac{135^0}{4}+k90^0\end{matrix}\right.\)
c.
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-x+k2\pi\\2x+\frac{\pi}{3}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
d.
\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=cos2x\)
\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-x+k2\pi\\x-\frac{2\pi}{3}=2x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{12}+k\pi\\x=-\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
e.
\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=sin\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=cos\left(\frac{\pi}{6}-2x\right)\)
\(\Leftrightarrow2x-\frac{\pi}{4}=\frac{\pi}{6}-2x+k2\pi\)
\(\Leftrightarrow x=\frac{5\pi}{48}+\frac{k\pi}{2}\)
\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)
\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)
Đặt \(\frac{1}{cosx}=t\)
\(\Rightarrow9t^2-13t+4=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)
d/
\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)
\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^22x+sin2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
a/ ĐKXĐ: \(x\ne\frac{3\pi}{4}+k\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\tan\left(x-\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x-\frac{\pi}{4}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow sin3x=-cos\left(4x+50^0\right)\)
\(\Leftrightarrow sin3x=sin\left(4x-40^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-40^0=3x+k360^0\\4x-40^0=180^0-3x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40^0+k360^0\\x=\frac{220^0}{7}+\frac{k360^0}{7}\end{matrix}\right.\)