\(tanx.tan\frac{\pi}{9}=1+tan\frac{\pi}{9}.tan\frac{\pi}{90}+tanx.tan\frac{\p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2020

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho

NV
15 tháng 7 2020

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

NV
8 tháng 8 2020

3.

ĐKXĐ: ...

\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)

\(\Leftrightarrow tan^22x+tan^22x=8\)

\(\Leftrightarrow tan^22x=4\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)

Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)

NV
8 tháng 8 2020

1. ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)

\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)

\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)

2.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)

\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)

\(\Leftrightarrow2x+3=x+1+k\pi\)

\(\Rightarrow x=-2+k\pi\)

NV
16 tháng 9 2020

c.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)

\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)

\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)

d.

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)

\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)

\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

29 tháng 3 2020

Bài 1:

ĐK : sinx cosx > 0

Khi đó phương trình trở thành

sinx+cosx=\(2\sqrt{\sin x\cos x}\)

ĐK sinx + cosx >0 → sinx>0 ; cosx>0

Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Vậy ...

29 tháng 3 2020

Bài 2:

ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)

Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :

\(x=\frac{\pi}{12}\) (TMĐK)

\(x=-\frac{11\pi}{12}\) (KTMĐK)

\(x=\frac{5\pi}{12}\) (KTMĐK)

\(x=-\frac{7\pi}{12}\) (TMĐK)

Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\)\(x=-\frac{7\pi}{12}\)

NV
26 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
26 tháng 7 2020

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

NV
17 tháng 9 2020

c. ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{3}sin\pi x=\frac{\pi}{6}+k\pi\)

\(\Leftrightarrow sin\pi x=\frac{1}{2}+3k\)

\(-1\le\frac{1}{2}+3k\le1\Rightarrow k=0\)

\(\Rightarrow sin\pi x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi x=\frac{\pi}{6}+k2\pi\\\pi x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+2k\\x=\frac{5}{6}+2k\end{matrix}\right.\)

NV
17 tháng 9 2020

a/

\(\Leftrightarrow\frac{\pi}{6}cosx+\frac{\pi}{3}=k\pi\)

\(\Leftrightarrow cosx=-2+6k\)

Do \(-1\le cosx\le1\Rightarrow-1\le-2+6k\le1\)

\(\Rightarrow\frac{1}{6}\le k\le\frac{1}{2}\Rightarrow\) ko tồn tại k thỏa mãn

Vậy pt vô nghiệm

b.

\(\Leftrightarrow\pi cos3x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow cos3x=\frac{1}{2}+k\)

\(-1\le\frac{1}{2}+k\le1\Rightarrow k=\left\{-1;0\right\}\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
NV
20 tháng 7 2020

a/

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)

\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)

\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)