Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài thì ta có:
\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)
\(\Leftrightarrow x_2=7-2m\)
Thế lại vô (2) ta được
\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)
\(\Leftrightarrow4m^2-17m+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)
a,Để pt có hai nghiệm trái dấu thì :
(m + 1)2.(m2 - 1) < 0
Mà (m + 1)2 > 0 nên m2 - 1 < 0
=> m < 1.
Vậy ...
a/ Bạn tự giải
b/ Để pt có nghiệm kép \(\Rightarrow\Delta=0\)
\(\Rightarrow25-4\left(m-2\right)=0\Leftrightarrow4m=33\Rightarrow m=\frac{33}{4}\)
c/ \(\Delta\ge0\Rightarrow m\le\frac{33}{4}\)
Từ Viet và điều kiện của bài toán ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1=4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x_2=5\\x_1=4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=1\end{matrix}\right.\)
Mà \(x_1x_2=m-2\Rightarrow m-2=4\Rightarrow m=6\)
\(\Delta'=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\) pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m-4\end{matrix}\right.\)
\(x_1^2+x_2^2+2x_1x_2+x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{9}{4}\end{matrix}\right.\)
a)Thay m=2 vào phương trình trên ta được:
\(3x^2+4\left(2-1\right)x-2^2=0\)
\(\Leftrightarrow3x^2+4x-4=0\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)
Câu 1:
Trước hết để pt có 2 nghiệm (phân biệt) thì:
\(\Delta'=6^2-2(2m-1)>0\)
\(\Leftrightarrow m< \frac{19}{2}\)
Khi đó, với $x_1,x_2$ là 2 nghiệm của pt, áp dụng định lý Vi-et ta có: \(x_1+x_2=6\)
Nếu PT có 2 nghiệm đều nhỏ hơn $1$ thì $x_1+x_2<2$ (mâu thuẫn với điều trên)
Do đó không tồn tại $m$ để pt có 2 nghiệm đều nhỏ hơn $1$
Câu 2:
Trước tiên để pt có 2 nghiệm phân biệt thì:
\(\Delta=5^2-4(m+4)>0\)
\(\Leftrightarrow m< \frac{9}{4}\)
Khi đó, áp dụng định lý Vi-et ta có:\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)
a)
\(3=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)
\(\Leftrightarrow 3=\sqrt{x_1^2-2x_1x_2+x_2^2}\)
\(\Leftrightarrow 3=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{25-4(m+4)}\)
\(\Leftrightarrow 25-4(m+4)=9\Leftrightarrow m=0\) (thỏa mãn)
b)
\(|x_1|+|x_2|=4\)
\(\Leftrightarrow |5-x_2|+|x_2|=4\)
Ta luôn có BĐT \(4=|5-x_2|+|x_2|\geq |5-x_2+x_2|=5\Rightarrow 4\geq 5\) (vô lý)
Do đó không tồn tại $m$ thỏa mãn điều kiện đã cho.
\(5x^2-4\left(m+1\right)x+2=0\)
Xét \(\Delta'=4\left(m^2+2m+1\right)-10=4m^2+8m-6\)
Nếu \(\Delta'< 0\)=> PT vô nghiệm
Nếu \(\Delta'=0\) thì PT có nghiệm kép \(x_1=x_2=\frac{2\left(m+1\right)}{5}\)
Nếu \(\Delta'>0\)thì PT có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}x_1=\frac{2\left(m+1\right)-\sqrt{4m^2+8m-6}}{10}\\x_2=\frac{2\left(m+1\right)+\sqrt{4m^2+8m-6}}{10}\end{matrix}\right.\)
thank u bạn nhiều