Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
\(\Delta'=36+5\left(m+3\right)=5m+51>0\Rightarrow m>-\frac{51}{5}\)
Khi đó theo Viet, pt có 2 nghiệm pb thỏa mãn: \(\left\{{}\begin{matrix}x_1+x_2=\frac{12}{5}\\x_1x_2=\frac{-m-3}{5}\end{matrix}\right.\)
Kết hợp với điều kiện đề bài ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{12}{5}\\2x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow3x_1=\frac{17}{5}\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{17}{15}\\x_2=\frac{12}{5}-x_1=\frac{19}{15}\end{matrix}\right.\)
Mặt khác \(x_1x_2=\frac{-m-3}{5}\Rightarrow\frac{-m-3}{5}=\frac{17}{15}.\frac{19}{15}\)
\(\Rightarrow m=-\frac{458}{45}\) (thỏa mãn)
\(x^2-4x+m=0\)
Để pt có 2 nghiệm \(x_1,x_2\Leftrightarrow\Delta\ge0\Leftrightarrow\left(-4\right)^2-4m\ge0\Leftrightarrow m\le4\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
Ta có :
\(2x_1+x_2=7\)
\(\Leftrightarrow\left\{{}\begin{matrix}2=\dfrac{x_1+x_2}{2}\\2x_1+x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\)
Thay \(x_1x_2=m\Leftrightarrow m=3.1=3\left(tmdk\right)\)
Vậy m = 3 thì pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(2x_1+x_2=7\)
`x^2 - 2 ( m + 2 ) x + m^2 + 7 = 0` `(1)`
`a)` Thay `m = 1` vào `(1)`. Ta có:
`x^2 - 2 ( 1 + 2 ) x + 1^2 + 7 = 0`
`<=> x^2 - 6x + 8 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-3)^2 - 8 = 1 > 0`
`=>` Ptr có `2` `n_o` pb
`x_1 = [ -b' + \sqrt{\Delta'} ] / a = [ -(-3) + \sqrt{1} ] / 1 = 4`
`x_2 = [ -b' - \sqrt{\Delta'} ] / a = [ -(-3) - \sqrt{1} ] / 1 = 2`
Vậy với `m = 1` thì `S = { 2 ; 4 }`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Ptr `(1)` có nghiệm `<=> \Delta' >= 0`
`<=> b'^2 - ac >= 0`
`<=> [ - ( m + 2 ) ]^2 - ( m^2 + 7 ) >= 0`
`<=> m^2 + 4m + 4 - m^2 - 7 >= 0`
`<=> 4m - 3 >= 0`
`<=> m >= 3 / 4`
Với `m >= 3 / 4`, áp dụng Vi-ét: `{(x_1 + x_2 = [-b] / a = 2m +4),(x_1 . x_2 = c / a = m^2 + 7):}`
Ta có: `-2x_1 + x_1 . x_2 - 2x_2 = 4`
`<=>x_1 . x_2 - 2 ( x_1 + x_2 ) = 4`
`<=> m^2 + 7 - 2 ( 2m +4 ) = 4`
`<=>m^2 + 7 - 4m - 8 - 4 = 0`
`<=> m^2 - 4m -5 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-2)^2 - (-5) = 9 > 0`
`=>` Ptr có `2` `n_o` pb
`m_1 = [ -b' + \sqrt{\Delta'} ] / a = -(-2) + \sqrt{9} = 5` (t/m)
`m_2 = [ -b' - \sqrt{\Delta'} ] / a = -(-2) - \sqrt{3} = -1` (ko t/m)
Vậy `m = 5` thì ptr có `2` nghiệm t/m yêu cầu đề bài
\(∘Angel\)
\(a)\) Thay \(m=1\) vào \((1)\) cta có :
\(x^2− 2 ( 1 + 2 ) x + 1 ^2 + 7 = 0\)
\(x ^2 − 6 x + 8 = 0\)
Pt có : \(Δ ' = b ' ^2 − a c = ( − 3 ) ^2 − 8 = 1 > 0\)
Pt có 2 \(n\)\(o\) pb
\(x1=\dfrac{b'+\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)+\sqrt{1}}{1}=4\)
\(x2=\dfrac{-b'-\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)-\sqrt{1}}{1}=2\)
\(m=1\) thì \(S=\)\(\left\{2;4\right\}\)