Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
ĐK: $x\geq \frac{-11}{2}$
$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)
\(\Delta'(*)=12\)
\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$
$\Rightarrow a=1; b=-2\Rightarrow ab=-2$
Bài 1.
Đặt $x^2+2x=t$ thì PT ban đầu trở thành:
$t^2-t-m=0(1)$
Để PT ban đầu có 4 nghiệm phân biệt thì:
Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$
Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt.
Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$
Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$
Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)
Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$
b)
Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$
PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$
Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$
Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$
c) Để PT ban đầu có nghiệm duy nhất thì:
\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
d)
Ngược lại phần b, $m\geq \frac{-1}{4}$
e)
Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$
$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:
\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)
Theo Viet đảo, \(a^2;b^2\) là nghiệm của:
\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(
b/ Đặt \(x=cos2t\) pt trở thành:
\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)
\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)
\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)
1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)
Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)
Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)
DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)
Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)
Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)
\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)
a/ ĐKXĐ: \(-2\le x\le2\)
Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)
\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)
\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)
Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc
b/ ĐKXĐ: \(-2\le x\le2\)
\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
\(\Rightarrow\left(a^2+4\right)a-5=0\)
\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)
\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)
Vậy pt vô nghiệm
Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:
\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)
\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)
\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm
a.
ĐKXĐ: \(-4\le x\le2\)
Đặt \(\sqrt{-x^2-2x+8}=t\ge0\)
Do \(\sqrt{-x^2-2x+8}=\sqrt{-\left(x+1\right)^2+9}\le\sqrt{9}=3\)
\(\Rightarrow0\le t\le3\)
Khi đó pt trở thành:
\(8-t^2-4t-m=0\)
\(\Leftrightarrow m=-t^2-4t+8\) (1)
Xét hàm \(f\left(t\right)=-t^2-4t+8\) trên \(\left[0;3\right]\)
\(-\frac{b}{2a}=-2\notin\left[0;3\right]\) ; \(f\left(0\right)=8\) ; \(f\left(3\right)=-13\)
\(\Rightarrow-13\le f\left(t\right)\le8\) ; \(\forall t\in\left[0;3\right]\)
\(\Rightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-13\le m\le8\)
b.
ĐKXĐ: \(-3\le x\le1\)
Đặt \(\sqrt{x+3}+\sqrt{1-x}=t\)
\(\Rightarrow t^2=4+2\sqrt{-x^2-2x+3}\Rightarrow-\sqrt{-x^2-2x+3}=\frac{4-t^2}{2}\)
Ta có:
\(\sqrt{x+3}+\sqrt{1-x}\ge\sqrt{x+3+1-x}=2\Rightarrow t\ge2\)
\(\sqrt{x+3}+\sqrt{1-x}\le\sqrt{2\left(x+3+1-x\right)}=2\sqrt{2}\)
\(\Rightarrow2\le t\le2\sqrt{2}\)
Pt đã cho trở thành:
\(2t+\frac{4-t^2}{2}+m-3=0\)
\(\Leftrightarrow\frac{1}{2}t^2-2t+1=m\) (1)
Xét hàm \(f\left(t\right)=\frac{1}{2}t^2-2t+1\) trên \(\left[2;2\sqrt{2}\right]\)
\(-\frac{b}{2a}=2\in\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=-1\) ; \(f\left(2\sqrt{2}\right)=5-4\sqrt{2}\)
\(\Rightarrow-1\le f\left(t\right)\le5-4\sqrt{2}\) ; \(\forall t\in\left[2;2\sqrt{2}\right]\)
\(\Leftrightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-1\le m\le5-4\sqrt{2}\)
a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)
\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)
Với x = 0 \(\Rightarrow pttm\)
Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)
b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)
\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.