Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Leftrightarrow6\left(x^2+8\right)\left(x^3+3\right)+12\left(x^2+2\right)\left(x^2+3\right)=3\left(x^2+2\right)\left(x^2+8\right)\left(x^2+3\right)-7\left(x^2+2\right)\left(x^2+8\right)\)
\(\Leftrightarrow18x^4+126x^2+216=3x^6+32x^4+68x^2+32\)
\(\Leftrightarrow18x^4+126x^2+216-3x^6-32x^4-68x^2-32=0\)
\(\Leftrightarrow-14x^4+58x^2+184-3x^6=0\)
\(\Leftrightarrow x=\pm2\)
Vậy: nghiệm phương trình là: \(\left\{\pm2\right\}\)
Giải như bạn trên cũng được, nhưng mình nghĩ làm cách này đỡ tốn sức hơn :
\(2,\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Rightarrow\frac{6}{x^2+2}-1+\frac{12}{x^2+8}-1+\frac{7}{x^2+3}-1=0\)
\(\Rightarrow\frac{6-x^2-2}{x^2+2}+\frac{12-x^2-8}{x^2+8}+\frac{7-x^2-3}{x^2+3}=0\)
\(\Rightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}+\frac{-x^2+4}{x^2+3}=0\)
\(\Rightarrow-\left(x^2-4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)
Vì \(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\left(>0\forall x\right)\)
\(\Rightarrow x^2-4=0\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x=\pm2\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)-2=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)-2\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\times\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\right)\)
\(\Leftrightarrow x=-100\)
Vậy......
Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
<=> \(\frac{6\left(x+4\right)-30x+120}{30}=\frac{10x-15x+30}{30}\)
<=> 6x + 24 - 30x + 120 = -5x + 30
<=> -24x + 5x = 30 - 144
<=> -19x = -114
<=> x = 6
Vậy S = {6}
\(x+\frac{1}{x}=1-\sqrt{6}\)(1) đk: \(x\ne0\)
- Nếu x>0 => VT(1) >0; VP(1) <0 => (1) không có nghiệm x>0. (*)
- Với x<0 => (1) \(\Leftrightarrow-x+\frac{1}{-x}=\sqrt{6}-1\)(2)
Áp dụng BĐT Cô si cho 2 số dương là \(-x;-\frac{1}{x}\)ta có: \(-x+\left(-\frac{1}{x}\right)\ge2\)=> VT(2) >=2 (a)
Mặt khác: \(9>6\Rightarrow3>\sqrt{6}\Rightarrow2>\sqrt{6}-1\)hay VP(2) <2 (b)
Từ (a) và (b) ta có (2) không có nghiệm x<0. (**)
Từ (*) và (**) suy ra phương trình đã cho vô nghiệm x.
a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)
So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)
Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha
\(x+\frac{1}{x}=1+\sqrt{6}\left(DK:x\ne0\right)\)
\(\Leftrightarrow x^2+1=x\left(1+\sqrt{6}\right)\)
\(\Leftrightarrow x^2-x\left(1+\sqrt{6}\right)+1=0\)
Xét \(\Delta=\left(1+\sqrt{6}\right)^2-4=3+2\sqrt{6}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{1+\sqrt{6}-\sqrt{3+2\sqrt{6}}}{2}\\x_2=\frac{1+\sqrt{6}+\sqrt{3+2\sqrt{6}}}{2}\end{cases}}\)(TM)
Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{6}-\sqrt{3+2\sqrt{6}}}{2};\frac{1+\sqrt{6}+\sqrt{3+2\sqrt{6}}}{2}\right\}\)
Mình giải cách của lớp 9 nhé ^^
\(x+\frac{1}{x}=1+\sqrt{6}\)
=> \(\frac{x^2+1}{x}=\frac{x\left(1+\sqrt{6}\right)}{x}\)
=> \(x^2+1=x+x\sqrt{6}\)
=> \(x\)
Ko xác định