Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath
Đây nè bạn
mơn bạn mik cũng đặt ẩn phụ hoàn toàn
zậy bạn lm giúp mik hai câu cúi nhé!!!!
đề sai hay vô nghiệm nhỉ
pt lớn thế này vô nghiệm hơi phí chắc sai đề
Dk: x\(\ge0\)
lien hop
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)
\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)
\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)
\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)
\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)
\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)
\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
đề sai nx ko nhỉ vẫn ko ra nghiệm v~, hay đề chí vô nghiệm ko biết :v
có lẽ là vậy ~~