K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(\frac{(b-c)(1+a)^2}{x+a^2}+\frac{(c-a)(1+b)^2}{x+b^2}+\frac{(a-b) (1+c)^2}{x+c^2}=0\)

\(\Leftrightarrow \sum (b-c)(1+a)^2(x+b^2)(x+c^2)=0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca)=0\)

\(\Leftrightarrow x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Xét phương trình  \(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Ta thấy \(\Delta=(2a+2b+2c+ab+bc+ca-1)^2+8(a+b+c-abc)\)

Nếu \(\Delta <0\) thì phương trình vô nghiệm

Nếu \(\Delta =0\) thì phương trình có nghiệm kép

Nếu \(\Delta >0\) thì phương trình có hai nghiệm 

8 tháng 2 2018

Quy đồng rồi phân tích nhân tử bình thường đi

\(\left(x-1\right)\left(x-ab-bc-ca\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

10 tháng 1 2020

có nhầm đề ko bạn

10 tháng 1 2020

xem lại được không