K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Ta có:

\(\frac{21}{2+\frac{1}{x+\frac{2}{4+\frac{3}{5+\frac{5}{6}}}}}=\frac{8463}{25}\)

=>\(\frac{21}{2+\frac{1}{x+\frac{35}{79}}}=\frac{8463}{25}\)

\(\Rightarrow2+\frac{1}{x+\frac{35}{79}}=\frac{21}{\frac{8463}{25}}\)

\(\Rightarrow2+\frac{1}{x+\frac{35}{79}}=\frac{25}{403}\)

\(\Rightarrow\frac{1}{x+\frac{35}{79}}=-\frac{781}{403}\)

\(\Rightarrow x+\frac{35}{79}=-\frac{403}{781}\)

\(\Rightarrow x=-0,9590430963\)

có j sai mong c thông cảm nhá :) ms lớp 7 mà :D

27 tháng 6 2016

Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)

=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)

<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)

<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)

<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)

<=>\(x+1>\frac{60}{43}\)

<=> x>\(\frac{17}{43}\)

Vậy x>17/43

27 tháng 6 2016

cho tam giác abc vuông tại a và đường cao ah =12cm, ch = 5cm. tính sin b sin c

ai giải giúp mình bài toán này với mk đang cần rất gấp

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y

13 tháng 6 2020

\(\frac{1}{x-1}+\frac{6}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)

\(\Leftrightarrow\frac{3x+5+6x-6}{3x^2+2x-5}=\frac{2x+6+x+2}{x^2+5x+6}\)

\(\Leftrightarrow\frac{9x-1}{3x^2+2x-5}=\frac{3x+8}{x^2+5x+6}\)

\(\Rightarrow9x^3+44x^2+49x-6=9x^3+30x^2+x-40\)

\(\Leftrightarrow14x^2-48x+34=0\)

\(\Rightarrow14x^2-14x-34x+34=0\)

\(\Rightarrow\left(x-1\right)\left(14x-34\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\14x-34=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{17}{7}\end{cases}}}\)

Ngu nên làm dài dòng thôi