K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

a) (x-1)x(x+1)(x+2) = 24

<=> [(x-1)(x+2)][x(x+1) = 24

<=> (x^2+x-2)(x^2+x) = 24     (1)

Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4    (*)

(1) trở thành (t-1)(t+1) = 24

<=> t^2 - 1 - 24 = 0

<=> t^2 - 25 = 0

<=> t^2 = 25

<=> t=5 hoặc t=-5

Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5

<=> (x+1/2)^2 = 25/4

Đến đây dễ r`

30 tháng 1 2017

c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0

<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0

<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0

<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0

<=> (x+1)^2.(x^2+x+1) = 0

Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0

Nên x+1=0 <=> x=-1

Vậy ...

9 tháng 2 2019

c)Ta có: \(x^4+3x^3+4x^2+3x+1=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x+1\right)+1\left(x^3+2x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) nên vô nghiệm

Suy ra x + 1 =0 hay x = -1

9 tháng 2 2019

X=0 hoặc -1

30 tháng 12 2018

\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)

\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)

18 tháng 8 2016

\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)

\(-18x^3+51x^2+9x-60=0\)

\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)

24 tháng 2 2017

a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)

\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)

\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)

\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)

\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)

Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0

\(\Rightarrow x+65=0\)

\(\Leftrightarrow x=-65\)

Vậy x = -65

b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)

\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)

\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)

\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)

\(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0

\(\Rightarrow x-99=0\)

\(\Leftrightarrow x=99\)

Vậy x =99

30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
15 tháng 7 2017
  1. Tập xác định của phương trình

  2. 2

    Rút gọn thừa số chung

  3. 3

    Biệt thức

  4. 4

    Biệt thức

  5. 5

    Nghiệm

16 tháng 7 2017

phaỉ giải rõ ra bạn nhé !