Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3^2}\right)+\left(y^2-2y+1\right)=\frac{7}{3}\)
\(\Leftrightarrow3\left(x-\frac{1}{3}\right)^2+\left(y-1\right)^2=\frac{7}{3}\)
Pt này không có nghiệm cố định, chỉ có thể biện luận nghiệm.
\(+\text{Nếu }\left(y-1\right)^2>\frac{7}{3}\text{ thì }pt\text{ vô nghiệm.}\)
\(+\text{Nếu }\left(y-1\right)^2=\frac{7}{3}\text{ thì }pt\text{ trở thành }3\left(x-\frac{1}{3}\right)^2=0\Leftrightarrow x=\frac{1}{3}\)
\(+\text{Nếu }\left(y-1\right)^2<\frac{7}{3};\text{ }\)
\(pt\Leftrightarrow\left(x-1\right)^2=\frac{\frac{7}{3}-\left(y-1\right)^2}{3}\)
\(\Leftrightarrow x-1=\pm\sqrt{\frac{\frac{7}{3}-\left(y-1\right)^2}{3}}\)
\(\Leftrightarrow x=1\pm\sqrt{\frac{\frac{7}{3}-\left(y-1\right)^2}{3}}\)
<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0
<=> (x2 - 2x)2 + x2 - 2x - 12 = 0
Đặt t = x2 - 2x
Khi đó ta có pt: t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)
*Với t = 3 ta có: x2 - 2x = 3
<=> x2 - 2x - 3 = 0
<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
*Với t = -4 ta có: x2 - 2x = -4
<=> x2 - 2x + 4 = 0
<=> (x - 1)2 + 3 = 0 (Vô nghiệm)
Vậy S = {3;-1}
(x2-2x)2 + (x-1)2 - 13 = 0
<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0
<=> x^3 - 4x^3 + 5x^2 - 2x - 12 = 0
<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0
<=> x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0
<=> (x^3 - 5x^2 + 10x - 12)(x + 1) = 0
<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0
<=> [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0
<=> (x^2 - 2x + 4)(x - 3)(x + 1) = 0
có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0
<=> x - 3 = 0 hoặc x + 1 = 0
<=> x = 3 hoặc x = -1
\(\left(x^2-2x+6\right)\left(x^2-8x+4\right)+\left(5x+1\right)\left(x+1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
Xong rồi nhé
\(\left(x^2-2x+6\right)\left(x^2-8x-4\right)+\left(5x+1\right)\)\(\left(x-1\right)-\left(x^2-3x-3\right)\left(x^2+x-3\right)=\)\(0\)
\(\Leftrightarrow x^8-5x^2+7x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+1\right)=0\)
~ 양 셜 김 ~
\(\Leftrightarrow\int^{x+y=20}_{\left(x+y\right)^2-4xy=208}\Leftrightarrow\int^{x+y=20}_{xy=96}\)
Dùng Viet đảo suy ra x,y
Ta có : x+ y = 20
<=> y = 20 - x
Thế vào x2 + y2 = 208
Ta được : x2 + ( 20 - x )2 =208
<=> x2 + 400 - 40x + x2 = 208
<=> 2x2 - 40x + 192 = 0
<=> x=12 hoặc x= 8
Với x= 12
=> y = 20 - 12 = 8
Với x= 8
=> y = 20 - 8 = 12
OK
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....