Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
Phương trình đã cho tương đương với :
\(1+\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}\cos2x-3\left(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x\right)=0\)
\(\Leftrightarrow1-\cos\left(2x+\frac{\pi}{3}\right)-3\sin\left(x+\frac{\pi}{6}\right)=0\)
\(2\sin^2\left(x+\frac{\pi}{6}\right)-2\sin\left(x+\frac{\pi}{6}\right)=0\Leftrightarrow\begin{cases}\sin\left(x+\frac{\pi}{6}\right)=0\\\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\end{cases}\) (Loại \(\sin\left(x+\frac{\pi}{6}\right)=\frac{3}{2}\))
Với \(\sin\left(x+\frac{\pi}{6}\right)=0\Rightarrow x=-\frac{\pi}{6}+k\pi,k\in Z\)
a.
\(sin4x+\sqrt{3}cos4x=-\sqrt{2}\)
\(\Leftrightarrow\frac{1}{2}sin4x+\frac{\sqrt{3}}{2}cos4x=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{3}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{3}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(2sin2x+2sin^2x=1\)
\(\Leftrightarrow2sin2x+1-cos2x=1\)
\(\Leftrightarrow2sin2x=cos2x\)
\(\Leftrightarrow tan2x=\frac{1}{2}\)
\(\Leftrightarrow2x=arctan\left(\frac{1}{2}\right)+k\pi\)
\(\Leftrightarrow...\)
c.
\(cos^2x-sin^2x-\sqrt{3}sin2x=1\)
\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\)
\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow...\)
d.
\(5sin2x-3\left(1+cos2x\right)=13\)
\(\Leftrightarrow5sin2x-3cos2x=16\)
Do \(5^2+\left(-3\right)^2< 16^2\) nên pt vô nghiệm
e.
\(\Leftrightarrow sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(3x-\frac{\pi}{2}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow...\)