K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

ban oi hinh nhu sai de

mk nghi de no la phai la

2-x/200

2 tháng 5 2019

không sai mà do thiếu ()

10 tháng 1 2016

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\left(\text{ vì }\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)

<=>x=2003

Vậy S={2003}

3 tháng 2 2020

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2001}+1\right)+\left(\frac{-x}{2003}+1\right)\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow\left(2003-x\right)=0\) (vì \(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\))

\(\Leftrightarrow x=2003\).

Vậy tập nghiệm của phương trình là \(S=\left\{2003\right\}\).

10 tháng 5 2018

a,\(\Leftrightarrow\left(\frac{1-x}{2013}+1\right)=\left(\frac{2-x}{2012}+1\right)-\left(1-\frac{x}{2014}\right)\)

   \(\Leftrightarrow\frac{2014-x}{2013}=\frac{2014-x}{2012}-\frac{2014-x}{2014}\)

   \(\Leftrightarrow\frac{2014-x}{2013}-\frac{2014-x}{2012}+\frac{2014-x}{2014}\)=0

   \(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2013}-\frac{1}{2012}+\frac{1}{2014}\right)=0\)

   \(\Leftrightarrow x=2014\left(do.cái.còn.lại.\ne0\right)\)

b,tương tự +1 vào cái thứ nhất ,+1 vào cái thứ 2,1- vào cái thứ 3 được x=2013

10 tháng 5 2018

ban oi them bot sai roi

19 tháng 2 2019

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\left(\frac{x}{2003}-1\right)\)

\(\Leftrightarrow\frac{2-x+2001}{2001}=\frac{1-x+2002}{2002}+\frac{x-2003}{2003}\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{x-2003}{2003}\)

\(\Leftrightarrow\left(x-2003\right)\left(\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\right)=0\)

\(\Leftrightarrow x-2003=0\)\(\left(v\text{ì}\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\ne0\right)\)

\(\Leftrightarrow x=2003\)

Vậy \(S=\left\{2003\right\}\)

19 tháng 2 2019

d)Ta có :  \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1-2=\frac{1-x}{2002}+1+1-\frac{x}{2003}-2\)\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)

Vậy phương trình có tập nghiệm S = { 2003 }

30 tháng 3 2017

\(\dfrac{x-4}{2001}\)- 1 +\(\dfrac{x-3}{2002}\)-1 + \(\dfrac{x-2}{2003}\)-1 =\(\dfrac{x-2003}{2}\)-1 + \(\dfrac{x-2002}{3}\)-1 +\(\dfrac{x-2001}{4}\)-1 <=> \(\dfrac{x-2005}{2001}\)+\(\dfrac{x-2005}{2002}\)+\(\dfrac{x-2005}{2003}\)-\(\dfrac{x-2005}{2}\)-\(\dfrac{x-2005}{3}\)-\(\dfrac{x-2005}{4}\)= 0 <=> (x-2005). (\(\dfrac{1}{2001}\)+\(\dfrac{1}{2002}\)+\(\dfrac{1}{2003}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)) =0 <=> x-2005=0 ( vì \(\dfrac{1}{2001}\) +\(\dfrac{1}{2002}\) +\(\dfrac{1}{2003}\)- \(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\) khác 0) =>x = 2005

30 tháng 3 2017

x-4/2001+ x-3/2002 + x-2/2003= x-2003/2 + x-2002/3 + x-2001/4

<=>(x-4/2001 -1)+(x-3/2002 -1)+(x-2/2003 -1)-(x-2003/2 -1)+

(x-2002/3 -1)+(x-2001/4 -1) =0

<=>x-2005/2001+ x-2005/2002+ x-2005/2003- x-2005/2-

x-2005/3- x-2005/4 =0

<=>(x-2005).(1/2001+1/2002+1/2003- 1/2- 1/3- 1/4)=0

<=>x-2005=0 (vì 1/2001+1/2002+1/2003-1/2-1/3-1/4)

<=>x=2005

Vậy pt có nghiệm là x=2005

27 tháng 2 2020

a, Ta có : \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)

=> \(\frac{4\left(x+1\right)}{12}+\frac{9\left(2x+1\right)}{12}=\frac{2\left(2x+3\left(x+1\right)\right)}{12}+\frac{7+12x}{12}\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3\left(x+1\right)\right)+7+12x\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3x+3\right)+7+12x\)

=> \(4x+4+18x+9=4x+6x+6+7+12x\)

=> \(4x+18x-12x-6x-4x=6+7-4-9\)

=> \(0x=0\) ( Luôn đúng với mọi x )

Vậy phương trình có vô số nghiệm .

b, Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1-\frac{x}{2003}+1\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)

=> \(\frac{2-x}{2001}+\frac{2001}{2001}=\frac{1-x}{2002}+\frac{2002}{2002}+\frac{-x}{2003}+\frac{2003}{2003}\)

=> \(\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

=> \(\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)

=> \(\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy phương trình có tập nghiệm là \(S=\left\{2003\right\}\)