K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\left(\text{ vì }\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)

<=>x=2003

Vậy S={2003}

2 tháng 3 2018

2.

pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0

<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0

<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0

<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )

<=> x=2000

Tk mk nha

2 tháng 3 2018

1.

a, = (2x-1)^2-2.(2x-1)+1-4

    = (2x-1-1)^2-4

    = (2x-2)^2-4

    = (2x-2-2).(2x-2+2)

    = 2x.(2x-4)

b, = [x.(x+3)].[(x+1).(x+2)]

    = (x^2+3x).(x^2+3x+1)-8

    = (x^2+3x+1)^2-1-8

    = (x^2+3x+1)^2-9

    = (x^2+3x+1-3).(x^2+3x+1+3)

    = (x^2+3x-2).(x^2+3x+4)

    = ((x+1).(x+3).(x^2+3x-2)

Tk mk nha

19 tháng 2 2019

a) \(22-x\left(1-4x\right)=\left(2x+3\right)^3\)

\(\Leftrightarrow22-x+4x^2=8x^3+36x^2+54x+27\)

\(\Leftrightarrow-x-54x+4x^2-36x^2-8x^3=-22+27\)

\(\Leftrightarrow-8x^3-32x^2-55x=5\Leftrightarrow-8x^3-32x^2-55x-5=0\)

Bn tự làm tiếp nhé

b) \(\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\Leftrightarrow\frac{2.2x}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\)

\(\Leftrightarrow2.2x+2x-1=2\left(4-x\right)\Leftrightarrow4x+2x-1=8-2x\)

\(\Leftrightarrow6x-1=8-2x\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\)

Vậy phương trình có tập nghiệm S ={9/8}

19 tháng 2 2019

c) \(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)

\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

Do \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}>0\)

Nên \(x-2020=0\Leftrightarrow x=2020\)

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

10 tháng 5 2018

a,\(\Leftrightarrow\left(\frac{1-x}{2013}+1\right)=\left(\frac{2-x}{2012}+1\right)-\left(1-\frac{x}{2014}\right)\)

   \(\Leftrightarrow\frac{2014-x}{2013}=\frac{2014-x}{2012}-\frac{2014-x}{2014}\)

   \(\Leftrightarrow\frac{2014-x}{2013}-\frac{2014-x}{2012}+\frac{2014-x}{2014}\)=0

   \(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2013}-\frac{1}{2012}+\frac{1}{2014}\right)=0\)

   \(\Leftrightarrow x=2014\left(do.cái.còn.lại.\ne0\right)\)

b,tương tự +1 vào cái thứ nhất ,+1 vào cái thứ 2,1- vào cái thứ 3 được x=2013

10 tháng 5 2018

ban oi them bot sai roi

3 tháng 2 2020

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2001}+1\right)+\left(\frac{-x}{2003}+1\right)\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow\left(2003-x\right)=0\) (vì \(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\))

\(\Leftrightarrow x=2003\).

Vậy tập nghiệm của phương trình là \(S=\left\{2003\right\}\).

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....